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The advent of IoT is a great opportunity to reinvigorate Computing by focusing on autonomous
system design. This certainly raises technology questions but, more importantly, it requires building
new foundation that will systematically integrate the innovative results needed to face increasing
environment and mission complexity.

A key idea is to compensate the lack of human intervention by adaptive control. This is instru-
mental for system resilience: it allows both coping with uncertainty and managing mixed criticality
services. Our proposal for knowledge-based design seeks a compromise: preserving rigorousness
despite the fact that essential properties cannot be guaranteed at design time. It makes knowledge
generation and application a primary concern and aims to fully and seamlessly incorporate the adap-
tive control paradigm in system architecture.

1 Introduction

1.1 The IoT vision

The IoT vision promises increasingly interconnected smart systems providing autonomous services for
the optimal management of resources and enhanced quality of life. These are used in smart grids, smart
transport systems, smart health care services, automated banking services, smart factories, etc. Their
coordination should be achieved using a unified network infrastructure, in particular to collect data and
send them to the cloud which in return should provide intelligent services and ensure global monitoring
and control.

The IoT vision raises a lot of expectations and in our opinion, some over-optimism about its short-
term outcome and impact. According to analysts, the IoT consists of two segments of uneven difficulty.
One segment is the Human IoT which will be a significant improvement of Internet where the dominant
type of interaction will be client-server: increasingly intelligent services to satisfy semantically rich
requests.

The other segment is the so-called Industrial IoT which would coordinate autonomous services and
systems. The big difference with Human IoT is that the latter involves fast closed loops of cooperating
agents where human intervention is external to normal behavior. For instance, human operators might
intervene to change parameters of autonomous agents or to mitigate potentially dangerous situations. It
goes without saying that autonomous agents in the Industrial IoT will be critical as they will be the core
of complex systems such as, Intelligent Transport Systems, Smart Grids and other critical infrastructure,
e-health and financial services.

It is well understood that under the current state of the art the Industrial IoT vision cannot be reached
for several reasons. The first and main reason is poor trustworthiness of infrastructures and systems
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deployed over the Internet. It is practically impossible to guarantee safety and security of services and
systems for the simple reason that they have been built in an ad hoc manner. Safety and security are cross
cutting issues. They differ from performance in that they cannot be improved through controlled exper-
iments and tuning of system parameters. A second obstacle is the impossibility to guarantee reasonably
short response times in communications. Most protocols in large scale systems are not time-predictable.
Thus they cannot support reliable closed-loop interaction of autonomous agents. Finally, the reliability
of rigorously designed critical systems may be impacted by flaws of large systems to which they are
connected.

It is important to note that over the past decades almost no progress has been made to resolve these
problems. The Industrial Internet Consortiunﬂ has been established since March 2014 “in order to
accelerate market adoption and drive down the barriers to entry”. Despite the fact that it gathers together
hundreds of important industrial partners, to the best of our knowledge it has not delivered any results
that could even slightly move the mentioned roadblocks.

It is also important to note that these obstacles and limitations do not discourage key industrial
players from developing ambitious projects challenging the current state of the art. This is particularly
visible in automotive industry where the business stakes and technological risks are huge. In this race
for increasingly autonomous cars, the temptation is big to “jump ahead” and disrupt to a large extent the
standard rigorous systems engineering practice. A typical example is customization by software updates
on a monthly basis for Tesla cars. Such a practice breaches the rules of critical systems standards which
do not allow any modification of a product after commercialization. These standards require that the
trustworthiness of a product be fully established at design time. Typically, an aircraft is certified as a
product that cannot be modified including all its HW components — aircraft makers purchase and store
an advance supply of the microprocessors that will run the software, sufficient to last for the estimated
50 year production!

There is currently a striking contrast between the ambition for increasingly large autonomous systems
in the framework of IoT and the lack of adequate rigorous design methods and supported by tools.
This makes impossible the application of the current safety standards which as a rule require conclusive
evidence that the built system can cope with any type of critical mishap.

1.2  What happened to the promise of rigorous, disciplined systems engineering?

The fulfilment of the vision for increasingly autonomous integrated systems is not only a matter of
maturity of the state of the art. It also depends on the degree of risks that society accepts to take in
exchange of considerable anticipated benefits. The old ambition that computing systems engineering
should be as predictable as civil or electrical engineering has drastically evolved within the Computing
community and the broader public.

We believe that this observed shift of opinion is largely due to the lack of relevant theory enabling
rigorous and disciplined design. Theory has had a decreasing impact on software and systems engineer-
ing over the past decades. Formal methods failed to deliver results that would raise computing systems
engineering to the status of mature engineering disciplines. It turned out that such an ambition is totally
wrong and misleading. Physical systems engineering relies on theory allowing predictability and con-
structivity; and there are good reasons to believe that no such a “nice theory” could exist for computing
systems.

A very common attitude of researchers is to work on mathematically clean theoretical frameworks
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no matter how relevant they can be. Mathematical clarity and beauty attracts the most brilliant who
develop “low-level theory” that often has no point of contact with real practice. The results are usually
structure-agnostic and cannot be applied to real-languages, architectures and complex systems built from
components and protocols.

Contrary to theoretical, practically-oriented research has developed frameworks for programming,
modeling and building complex systems in an ad hoc manner — involving a large number of constructs
and primitives, with little concern about rigorousness and semantics (minimality, expressiveness). These
frameworks are badly amenable to formalization.

The gap between theory and practice in systems engineering and the huge push for system integration
fueled by market needs and by aspiration for innovation, have resulted in a dramatic change of the opinion
of IT professionals and by extension of the public opinion. This is characterized by the following three
synergizing positions.

One expresses a kind of “resigned realism” by adopting the idea that we have to move forward and
accept the risks because the benefits resulting from the increasing automation of services and systems
would be much larger. In an article by Vinton Cerf with the eloquent title “Take two aspirin and call me
in the morning” [7]] one can read: “So where does this leave us? 1 am fascinated by the metaphor of cyber
security as a public health problem. Our machines are infected and they are sometimes also contagious.
Our reactions in the public health world involve inoculation and quarantine and we tolerate this because
we recognize our health is at risk if other members of society fail to protect themselves from infection.”
Clearly this “cyber-hygiene” metaphor suggests that the current situation is a fatality we cannot escape.
It gets us very far from the vision of the engineer who designs buildings that will not collapse with a very
high probability for centuries. More recently, Warren Buffet talking about cyber insurance, has warned
that [18]] “there’s about a 2% risk of a $400 billion disaster occurring as a result of a cyber-attack or of
other issue”. Buffett also explains that when he speaks to cybersecurity experts, they tell him that “the
offense is always ahead of the defense, and that will continue to be the case.” And he adds that “After all,
the world runs on software, and software is written by humans who are just as flawed as you and me.”
No doubt, such statements open the way for accepting the imponderable risks induced by the ubiquitous
and extensive use of poorly engineered systems and applications of unmanaged complexity.

A second position consists in showing a non-justified over-optimism claiming that things will im-
prove just by magic without drastically changing the way we design systems and the network infrastruc-
ture. The quote below is from a technology analyst at Davos WEF 2016: “There is no such thing as
a secure system, [...] As we give access to devices around us, from drones to thermostats, we need to
make sure they cannot be easily hijacked. There will be a learning curve before we make them robust,
but we’ll learn.” Similar opinions can be found in many articles discussing the future of IoT in both the
technical and broad public press.

Furthermore, fallacious arguments about Al come to the aid of over-optimists: “I really consider
autonomous driving a solved problem. [... ] I think we are probably less than two years away.” — Elon
Musk, June 2, 2016. Although AI will be key for achieving autonomy, it does not help with making
system design as flawless as possible.

A third increasingly widespread opinion openly questions the interest of theoretical foundations for
software and system design. Large-scale systems developers (e.g. web-based systems) privilege purely
empirical approaches.

In an article published in CACM and entitled “A new software engineering” one can read amongst
others [[19]: “One might suggest computer science provides the underlying theory for software engineer-
ing — and this was, perhaps, the original expectation when software engineering was first conceived. In
reality, however, computer science has remained a largely academic discipline, focused on the science of
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computing in general but mostly separated from the creation of software-engineering methods in indus-
try. While “formal methods” from computer science provide the promise of doing some useful theoretical
analysis of software, practitioners have largely shunned such methods (except in a few specialized areas
such as methods for precise numerical computation).” Such positions, especially when published in a
flagship ACM journal, are likely to have a deep and irreversible impact. They strikingly contrast with
the Formal Methods vision advocated forty years ago by pioneers of Computing.

1.3 The Way Forward

The purpose of this paper is to discuss to what extent the IoT vision is reachable under the current state
of the art. Starting from the premise that current critical system practice and standards are not applicable
to autonomous systems in the context of IoT, we identify the new factors of difficulty/complexity and
propose novel avenues for overcoming them.

It is well-understood that systems engineering comes to a turning point moving: 1) from small size
centralized non evolvable systems, to large distributed evolvable systems; 2) from strictly controlled
system interaction with its external environment, to non-predictable dynamically changing environments;
3) from correctness at design time to correctness ensured through adaptation.

It is urgent that research in Computing refocuses on the so many open problems raised by modern
system design, breaking with the “positivist” spirit of Formal Methods and working on real problems
maybe at the detriment of “theoretical purity”. This is the only way to refute statements such as “system
design is a definitely a-scientific activity driven by predominant subjective factors that preclude rational
treatment”. Similar positions are promoted by influential “guilds” of gurus, craftsmen and experts within
big SW companies as well as by the whole ecosystem of technology consulting companies. The develop-
ment of a booming market in cybersecurity, and vested interests of consulting companies are hindering
public awareness for more trustworthy systems and infrastructure.

We need to reassess existing methods in the light of the needs as they have changed over the past
decades. Clearly, verification and formal methods should be applied to small systems whenever it is re-
alistic (cost-effective and tractable). We should investigate alternative methods for achieving correctness
not suffering complexity limitations, e.g. by construction.

We should admit that in the context of IoT, even critical systems cannot be guaranteed exempt of
flaws at design time. Without giving up the requirement for rigorousness, we should seek tradeoffs for
deciding if a system is trustworthy enough for the intended use.

The focus should be on autonomous system design, addressing related specific needs. It is essential
to study the concept of autonomy and identify the key theoretical and technical results for taking up the
autonomy challenge.

Autonomy is understood as the capacity of an agent (service or system) to achieve a set of coordinated
goals by its own means (without human intervention) by adapting to environment variations. It covers
three different aspects: 1) autonomy of decisions i.e. choosing among possible goals; 2) autonomy of
operations planned to achieve the goals; 3) autonomy of adaptation e.g. by learning.

The degree of autonomy of a system can be captured as the product of three independent factors:
1) Complexity of the environment; 2) complexity of mission and its implementation as a sequence of
feasible tasks; 3) non-intervention of human operators.

The interplay between these three factors is illustrated by the six SAE autonomy levels shown in Ta-
ble[T] varying from Level 0, for no automation, to Level 5, for full automation. Level 4 brings restrictions
to the environment as self-driving is supported only in limited areas or under special circumstances, like
traffic jams. Level 3 is a critical level as the human driver must be prepared to respond to a “request
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Table 1: SAE vehicle autonomy levels [23}[30]

Level 0 No automation

Level 1  Driver assistance required (‘“hands on”):
The driver still needs to maintain full situational awareness and control of the vehicle, e.g. cruise control.

Level 2  Partial automation options available(‘‘hands off”’):
Autopilot manages both speed and steering under certain conditions, e.g. highway driving.

Level 3 Conditional Automation(“‘eyes off”’):
The car, rather than the driver, takes over actively monitoring the environment when the system is engaged.
However, human drivers must be prepared to respond to a “request to intervene”.

Level4 High automation (“mind off”’):
Self driving is supported only in limited areas (geofenced) or under special circumstances, like traffic jams.

Level 5  Full automation (“steering wheel optional”):
No human intervention is required, e.g. a robotic taxi.

to intervene”. This type of interaction with a passive driver suddenly solicited to take over, raises some
issues as attested by the recent accident of an Uber car [14].

In this paper, we propose research directions for each one of the three factors characterizing the
degree of system autonomy:

* To cope with environment complexity we should seek a tighter integration of computing elements
and their environment, in particular through the use of cyber-physical components.

* To cope with mission complexity we need dynamic reconfiguration of resources and self-organi-
zation in particular through the use of adequate architectures;

* To compensate the lack of direct human intervention, we advocate extensive use of adaptive con-
trol techniques.

The paper is structured as follows. Section [2] summarizes well-known facts about system design.
It discusses current limitations of critical system design as it is enforced by standards, and its failure
to satisfy current needs. Section [3| presents research avenues for coping with the complexity stemming
from the need for increasingly high autonomy. Section ] advocates Knowledge-Based Design as an
alternative to existing critical system design techniques. Section [5] concludes with a discussion about
scientific, technological and societal stakes of the autonomy challenge.

2 System Design

2.1 About system correctness

System correctness is characterized as the conjunction of two types of properties: trustworthiness and op-
timization properties [27]. Trustworthiness means that the system can be trusted, and that it will behave
as expected despite: 1) software design and implementation errors; 2) failures of the execution infras-
tructure; 3) interaction with potential users including erroneous actions and threats; and 4) interaction
with the physical environment including disturbances and unpredictable events. Optimization require-
ments demand the optimization of functions subject to constraints on resources such as time, memory,
and energy, dealing with performance and cost-effectiveness.
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System designers should ensure trustworthiness without disregarding optimization as the two types
of requirements are often antagonistic. For small size critical systems, emphasis is put on trustworthi-
ness, while for large systems the emphasis is on optimization, provided that system availability remains
above some threshold. Thus comes the well-known concept of levels of criticality going from critical
systems to best-effort systems. This distinction reflects a big difference in development methods and
costs. Critical systems development is subject to standards defining evaluation criteria enforced by certi-
fication authorities. According to standards currently in effect, the reliability of an aircraft should be of
the order of 10~° failures per hour. Note that the reliability of best-effort systems may be as low as 10~
failures per hour while the reliability of a rocket is around 10~ failures per hour. Existing empirical
laws regarding the evolution of development costs of high confidence systems show that multiplying the
reliability of a system by some factor may require exponentially higher development costs. Furthermore,
the increase of the size of a system for the same reliability level has a similar effect.

These facts explain the current gap between critical and best effort system design discussed later.

To summarize, critical system design, as enforced by standards and methodologies, costs a lot and is
applicable only to small size systems (e.g. some hundreds of thousands of lines of code).

2.2 Rigorous system design — The principles

System design is the engineering process that leads from requirements to a mixed HW/SW system meet-
ing the requirements. The process follows a flow organized in steps, some of which are iterative. At each
step, the designer enriches a model of the designed system assisted by tools allowing him to check that
the properties derived from the requirements are met.

As achieving formal correctness seems practically impossible for real-life systems, we have pro-
posed rigorousness as a minimal requirement for guaranteeing trustworthiness in system design [4} [27]].
Rigorous system design is model-based and accountable.

Model-Based Even if different languages are used by designers, all these languages should be embed-
ded in a common host model in order to guarantee the overall coherency of the flow [26] (Figure [T).
In practice, there is no need of a distinct semantic model. The host model can be software written in a
general purpose programming language adequately structured and annotated.

A key idea is that the application software model is “composed” with an abstract execution platform
model to get a nominal system model that describes the behavior of the software running on the plat-
form. The composition operation is specified through a deployment consisting of 1) a mapping assigning
processes to processing elements and data to memories of the platform; 2) an associated scheduling
algorithm.

The nominal system model is progressively enriched by application of property-preserving model-
to-model transformations to obtain a general system model. The transformations are local and do not
suffer any complexity limitations. They should be proven correct in the sense that they should preserve
essential properties such as invariants and deadlock-freedom. They consist in adding, first, timing infor-
mation provided by an execution time estimation tool. Then, other transformations add mechanisms for
resilience to failures, attacks or any kind of critical hazards. The so enriched model sufficiently validated
is used to generate implementations.

Accountable Accountability concerns two aspects: 1) evidence that the designer’s choices are justified
by the need to meet properties implied by requirements; 2) guarantees that properties already estab-
lished at some design step, will still hold in subsequent steps. In practice, accountability can be eased
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Figure 1: The principle of a rigorous system design flow

through the use of assurance case methodologies. These allow structuring the designer’s reasoning to
gain confidence that systems would work as expected [1]].

Note that there exist only a few rigorous system design approaches dedicated to the development of
safety-critical real-time systems. Some approaches are based on the synchronous programming paradigm
[17]. Others are represented mainly by flows based on the ADA standard [29]. In both, rigorousness is
achieved at the price of severe restrictions regarding the programming and the execution model [27].

We explain below why current rigorous system design methodologies cannot meet the demand for
increasing autonomy in the framework of IoT.

2.3 The two pillars of rigorous system design
2.3.1 Verification

Verification is a process used to provide conclusive evidence that a system is correct with respect to a
given property. This can be achieved by checking in some exhaustive and rigorous manner that a system
model or the system development process model meets the property. Verification differs from testing in
that it seeks exhaustivity. It requires special care in the elaboration of the model and the formalization
of the properties to be verified. The properties should be derived from requirements usually expressed
in natural language. The models should be faithful: whatever property holds for the real system should
also hold for the model.

Verification and model checking in particular, constitutes one of the main breakthroughs for quality
assurance in both hardware and software development. It has drastically contributed to gaining math-
ematical confidence in system correctness [8]. Nonetheless, a key limitation of automated verification
methods is that they are applied to global models. Despite intensive research efforts, it was not possible
to develop automated compositional verification methods (inferring global system properties from prop-
erties of the constituent components at reasonable computational cost). This is a serious limitation of
automated verification techniques.

Another limitation concerns the possibility of building faithful general system models as defined in
Section 2.2] These models should account for the system behavior in the presence of critical events
that may compromise correctness (Figure [2)). Modeling the impact of such events requires a very good
knowledge of both the system and its environment, in particular of the dynamics of their interaction. As
system complexity and openness increase, the number of potentially critical events explodes. Note that
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Figure 2: Building the general system model

the degree of difficulty is much higher for security analysis. While some methodologies exist for fault
detection, isolation and recovery (FDIR) analysis [32] there is no systematic approach to global security
analysis as it is hard to figure out how human ingenuity can exploit system vulnerability. The recently
discovered Intel’s security flaw is a remarkable illustration of this fact [24]].

The second roadblock to system verification is system openness requiring the formalization of the
interaction dynamics between the system and some abstraction of its environment. It is very hard to
formalize requirements involving human behavior, computers and electromechanical devices.

Table 2] provides a list of high-level requirements (behavioral competencies) for self-driving cars
proposed by the California PATH project [23]. Their decomposition into formalized properties to be
checked on autonomous driving systems seems to be an unsurmountable problem. To formally verify
each one of these requirements, it is necessary to decompose it into a set of properties involving physical
quantities, discrete system events as well as relevant information about the geometry of the external
environment, e.g. coming from analysis of sensory information.

All the above limitations are even worsened by the fact that modern machine learning techniques,
essential components of autonomous systems, cannot be verified. The simple and obvious reason is that
they are not developed based on requirements, e.g. that specify how a dog looks different from a cat.
They learn just like children learn the differences between cats and dogs. So, establishing their safety
according to existing standards is problematic.

Finally, we should not neglect some non-technical obstacles that have to do with the social accep-
tance of the truthfulness of verification processes: it is not sufficient to prove that a system is correct
by some possibly sophisticated method. It is even much more important to convince institutions, e.g.
certification authorities [11]. This requires special care in the development of verification technology
with the possibility to check that also the whole verification process is exempt of error.

2.3.2 The V-model

Systems engineering standards often recommend the so-called “V model”, which consists in decompos-
ing system development into two flows. The first is top-down, starts from requirements and involves a
hierarchical decomposition of the system into components and a coordinating architecture. The other
flow is bottom-up and consists in progressively assembling, integrating, and testing the designed compo-
nents. This model has been criticized for several reasons [26]:

1. It assumes that all the system requirements are initially known, can be clearly formulated and
understood. Anyone with minimal experience in system design realizes that such an assumption is
not realistic. It is very often necessary to revise initial requirements.
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Table 2: Behavioral competencies for self-driving cars proposed by the California Path Project

1. Detect and Respond to Speed Limit Changes and Speed Advisories

2. Perform High-Speed Merge (e.g. Freeway)

3. Perform Low-Speed Merge

4. Move Out of the Travel Lane and Park (e.g. to the Shoulder for Minimal Risk)

5. Detect and Respond to Encroaching Oncoming Vehicles

6. Detect Passing and No Passing Zones and Perform Passing Maneuvers

7. Perform Car Following (Including Stop and Go)

8. Detect and Respond to Stopped Vehicles

9. Detect and Respond to Lane Changes

10. Detect and Respond to Static Obstacles in the Path of the Vehicle

11.  Detect Traffic Signals and Stop/Yield Signs

12. Respond to Traffic Signals and Stop/Yield Signs

13.  Navigate Intersections and Perform Turns

14. Navigate Roundabouts

15. Navigate a Parking Lot and Locate Spaces

16. Detect and Respond to Access Restrictions (One-Way, No Turn, Ramps, etc.)

17.  Detect and Respond to Work Zones and People Directing Traffic in Unplanned or Planned Events
18. Make Appropriate Right-of-Way Decisions

19. Follow Local and State Driving Laws

20. Follow Police/First Responder Controlling Traffic (Overriding or Acting as Traffic Control Device)
21. Follow Construction Zone Workers Controlling Traffic Patterns (Slow/Stop Sign Holders).

22. Respond to Citizens Directing Traffic After a Crash

23. Detect and Respond to Temporary Traffic Control Devices

24. Detect and Respond to Emergency Vehicles

25.  Yield for Law Enforcement, EMT, Fire, and Other Emergency Vehicles at Intersections, Junctions, and

Other Traffic Controlled Situations

26. Yield to Pedestrians and Bicyclists at Intersections and Crosswalks

27. Provide Safe Distance From Vehicles, Pedestrians, Bicyclists on Side of the Road

28. Detect/Respond to Detours and/or Other Temporary Changes in Traffic Patterns

2. It assumes that system development is top-down driven by refining the requirements and projecting
them on components. This assumption does not seem realistic too. First, modern systems are never
designed from scratch; they are often built by incrementally modifying existing systems and by
extensive component reuse. Second, it considers that global system requirements can be broken
down into properties satisfied by system components, which is a non-trivial problem.

3. It relies mainly on correctness-by-checking (verification or testing) which takes place bottom-up
only after the implementation is completed.
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Figure 3: Autonomous system design complexity

For all these reasons the V-model has been abandoned in modern software engineering in favor of
the so-called Agile methodologies. These consider that coding and designing should go hand in hand:
designs should be modified to reflect adjustments made to the requirements. So, design ideas are shared
and improved on during a project “in a spiral manner”.

In our opinion, the main merit of Agile methodologies is their criticism of the V-model rather than a
disciplined and well-structured way for tackling system development.

3 Trends and Challenges in Autonomous System Design

We have seen that system autonomy can be characterized as the interplay between three complexity
factors: environment, mission and non-intervention of humans. These factors do not impact autonomous
system design in the same manner. While hardness increases for increasing environment and mission
complexity, increasing the degree of automation may sometimes ease the design problem.

We discuss these three trends and show work directions and associated challenges.

3.1 System Design Complexity

We first analyze the role of the two factors directly impacting design complexity. Increasing auton-
omy requires tighter integration of computers and their physical environment as well as self-organization
of system resources. Figure [3] illustrates this observation. As we move away from the origin, auton-
omy increases from purely functional components to cyber physical components and from static to
self-organizing architectures. The dashed line separating functional and streaming components from
embedded and cyber physical components, marks the border between the Human and the Industrial [oT.
Increasing architecture complexity reflects increasing autonomy for services and systems respectively.
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3.1.1 Component Complexity — Cyber Physical Systems

Figure []illustrates different types of components for increasing intricacy of interaction with their envi-
ronment. The simplest components are functional. They compute some function f by delivering, for any
input datum x a corresponding output f(x). Streamers compute functions on streams. For a given input
stream of values, they compute a corresponding output stream. The output value at some time ¢ depends
on the history of the input value received by ¢. Encoders/decoders or in general data-flow systems involve
streamers. The requirements for such components are functional correctness and specific time-dependent
properties such as latency.

Embedded components continuously interact with a physical environment so as to ensure global
properties. Such components are mixed HW/SW components, where the real-time behavior and dynamic
properties are essential for correctness. Finally, cyber-physical components integrate embedded and
physical components. They combine discrete and continuous dynamics. Cyber and physical aspects are
deeply intertwined and their composition requires multi-scale and multi-domain integration of theories.

The study of cyber-physical systems has been the object of a rich literature over the past decade.
Nonetheless, key problems raised by their rigorous design remain open. These have to do with the
faithful modeling of complex electromechanical systems with discrete events, as well as the discretization
of hybrid models in view of their implementation. We currently lack theory and supporting tools for
component-based modeling, as the concepts of composition of physical and cyber models are radically
different. Physical systems models are inherently declarative, synchronous, parallel and the interaction
between components is data-flow; on the contrary, computation is inherently procedural, sequential and
interaction is natively event-driven.

Discretization of hybrid models raises semantic problems about how to detect and precisely simulate
converging system dynamics. We also lack theory for safe and efficient discretization as well as for
deciding whether a hybrid model is executable. The interested reader can find a detailed discussion of
these issues in [5]).

3.1.2 Architecture complexity — Self-organizing architectures

Architectures depict principles of coordination, paradigms that can be understood by all, allow think-
ing on a higher plane and avoiding low-level mistakes. They are a means for ensuring correctness by
construction, as they enforce specific global properties characterizing the coordination between the com-
posed components. System developers extensively use libraries of reference architectures such as time-
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triggered architectures, security architectures and fault-tolerant architectures.

Architectures can be considered as generic operators that can take as arguments arbitrary numbers
of instances of component types. The resulting system of coordinated components satisfies by construc-
tion a characteristic property. For instance, Client-Server architectures are used to coordinate arbitrary
numbers of instances of clients and servers. The ensured characteristic properties include atomicity of
transactions and fault-tolerance.

An architecture can be characterized by the three following attributes:

1. The type of the coordinated components specified by their interfaces including port (function)
names and rules regarding the way they are handled by the component’s environment;

2. The type of the supported interactions, which may vary from point-to-point to multiparty interac-
tion including rendezvous, broadcast, synchronous or asynchronous interaction;

3. The topology of the architecture which reflects the structure of the connections between com-
ponents as well as between components and their environment. Simple topologies include cen-
tralized architectures (components interacting through a single coordinator), hierarchical architec-
tures, ring architectures and clique architectures.

We characterize the complexity of architectures by the degree to which all these attributes may dy-
namically change and be organized, as illustrated in Figure[5] This classification distinguishes five types
of architectures and has been carried out based on technical criteria presented in [[12, [13]].

1. Static architectures involve a predefined number of components and interconnections, e.g. HW
architectures.

2. Parametric architectures take as arguments any number of instances of components of the appro-
priate type. Protocols, SW architectures, distributed algorithms are parametric architectures.

3. Dynamic architectures are parametric architectures supporting component dynamism — compo-
nents may be created and deleted as in a Client-Server system.

4. Mobile architectures are dynamic architectures where additionally the system’s external environ-
ment can dynamically change, as in mobile telecommunication systems.

5. Finally, self-organizing architectures allow reconfiguration between modes, where each mode has
its own coordination rules. Such architectures are instrumental for modeling complex autonomous
systems, e.g. swarms of robots and platooning vehicles.

Although architectures are of paramount importance in systems engineering, their formal study has
not attracted so far the deserved attention. Hardware engineering relies on the concept of architecture
as a means of building systems that satisfy essential properties by construction. In software engineering
the focus has mainly been on the development of specific Architecture Description Languages. Unfortu-
nately, most of the effort deals with syntactic aspects. More than 100 such languages have been proposed
over the past twenty years but none of them has been adopted by practitioners [22].

We believe that research in architectures should focus on modeling techniques for self-organizing ar-
chitectures by studying basic structuring principles and mechanisms and evaluating their expressiveness.
Additionally, architectures should be used as a means for building systems that are by construction cor-
rect. The idea is quite simple and straightforward. Putting it into practice requires work in the following
two directions.

First, we should study architectures as parametric behavior transformers and develop basic results
for checking their correctness. Existing results on parametric verification put emphasis on limitations
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Figure 5: Classification of architectures

[6,15]]. The parametric verification of very simple parametric systems, even with finite-state components,
is intractable. Nonetheless, we believe that it is worthwhile seeking practically relevant results in this
direction, e.g. by developing semi-decision methods as we did for infinite state systems.

Second, we need composability theory for architectures allowing to combine two architectural so-
lutions meeting each one a characteristic property, into a single solution meeting the conjunction of
the properties [3l]. Such results can be of tremendous practical relevance. Architectures can be imple-
mented as software into which components can be plugged. Composability results simply guarantee the
interference-free composition of two architecture softwares preserving respectively the enforced charac-
teristic properties.

3.2 Non-human intervention — Adaptivity

When humans cooperate with semi-automated systems to achieve a mission, e.g. Level 2 and 3 in au-
tonomous cars, they are mainly responsible for handling uncertain situations. It is well understood that
computers are not good enough when dealing with such situations, while they perform better than hu-
mans specific well-defined tasks. An important question is how to design systems that exhibit adaptive
behavior in real-time exactly as humans do.

3.2.1 Uncertainty in system design

Uncertainty in system design can be understood as the difference between average and extreme system
behavior. System design must cope with increasing uncertainty from two origins:

1. Uncertainty from the system’s external environment exhibiting non-deterministic behavior, e.g.
time-varying load, dynamic change due to mobility and attacks. How to figure out all possible
security threats devised by an experienced hacker?

2. Uncertainty from the hardware execution platform which has inherently non-deterministic behav-
ior owing to manufacturing errors or aging. It also exhibits time non-determinism since execution
times of even simple instructions cannot be precisely estimated due to the use of memory hierar-
chies and speculative execution.



14 System Design in the Era of IoT

Uncertainty directly affects predictability, the degree
to which qualitative or quantitative system properties can

Learning

Objective%anagement

CONTROLLER

be asserted (see the discussion in Section [4.)). s
. .. anning
Current state of the art in automated (and thus criti-
cal) system design consists in making a detailed analysis Action ‘ Mitigation Stimuli

of all the potentially dangerous situations by clearly distin-
guishing between the ones the system can cope with and
confiding all the rest in human operators. The analysis
considers possible worst-case critical situations for which
the designer should implement corresponding mitigation
mechanisms and foresee the needed resources, e.g. using  Fjgure 6: The principle of adaptive control
redundancy. This often results in over-provisioned, over-

engineered systems, with high production and operation costs.

For modern critical systems it is practically impossible to foresee at design time all the possible
hazards in system’s lifetime due to poor predictability. Even if the sought degree of automation for a
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current divide with critical and best engineering effort is not any more affordable both technically and
economically: it is an obstacle to increasing system integration [27]].
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3.2.2 The principle of adaptive control

In the face of this situation, it is necessary to give up the objective of guaranteeing trustworthiness at
design time and seek a better integration between critical and less critical features. An alternative, more
realistic avenue comes from the concept of adaptivity. It consists in enforcing properties through the
use of intelligent controllers that continuously monitor the behavior of the system and when a mishap is
detected, they steer the system so as to mitigate catastrophic effects. Adaptive control has originated in
control theory [2].

An adaptive controller combines in a hierarchical manner three basic functions (Figure [6)):

1. The central function is objective management that consists in choosing for a given state the best
objective by applying a multi-criteria optimization algorithm. This algorithm is applied to a pre-
dictive model of the controlled system.

2. The planning function is activated by the objective management in order to execute a mission for
achieving an objective.

3. The learning function is used to continuously update knowledge about the controlled system. In
particular, based on the monitored behavior it estimates parameter values of the objective manager.

Adaptive control finds numerous applications in systems engineering to enhance system trustworthi-
ness and optimality. For instance, to ensure security, early warning mechanisms are used to learn and
build profiles of system users. So, they can detect abnormal situations caused by attacks or spyware and
take adequate measures to mitigate their effect [16].

We have applied adaptive control to systems integrating both critical and best effort services. The
controller handles a provably sufficient amount of global resources to: 1) satisfy first and foremost critical
properties; and 2) secondarily, to handle optimally the available resources for best-effort services [10, 9]].

We believe that adaptivity is the technical answer to the demand for both integrated mixed criticality
systems and for trustworthiness despite uncertain/unpredictable environments.
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4 Knowledge-Based Design

The idea is to design a system with adaptivity in mind by incorporating the principle in the overall system
architecture. Not only run-time knowledge, but also knowledge about the designed system is applied for
the detection of critical events and the enforcement of properties. Such an approach should be more
effective than using adaptive controllers external to the system. Knowledge-based design takes special
care for accountability: at each design step we should know which essential properties hold. So, for the
designed system we know which properties are guaranteed at design time and which ones are left to be
monitored and possibly enforced at run time.

A system is deemed correct if knowledge both at design time and run time about the system allows
inferring satisfaction of its requirements.

4.1 The concept of knowledge

Knowledge is “truthful” information that can be used to understand/predict a situation or to solve a
problem. Truthfulness cannot always be asserted in a rigorous manner. Nonetheless, we can distinguish
degrees between fully justifiable knowledge and empirical knowledge. Mathematical knowledge has
definitely the highest degree of truthfulness. A theorem, e.g. the Pythagorean theorem, is true forever —
modulo acceptance of the axioms of Euclidian geometry. Scientific knowledge is a generalization of
experimental facts, e.g. Newton’s laws, and as such it is falsifiable. Then comes empirical knowledge,
which is not theoretically substantiated but is found to be useful by experience. Most common human
knowledge is empirical, e.g. common sense knowledge, but also knowledge from machine learning can
be considered to a large extent as empirical.

Furthermore, knowledge may be declarative or procedural, regarding the form it can take. Declar-
ative knowledge is a relation (property) involving entities of a domain, whereas procedural knowledge
describes information transformation in a stepwise manner. Typical examples of declarative knowledge
are the law of conservation of energy, a program invariant or an architecture pattern. Examples of proce-
dural knowledge are algorithms, design techniques, cooking recipes.

4.2 Generated and applied knowledge in system design

We discuss the principle of knowledge generation and application in systems design (Figure|[7).
Designers study systems to generate knowledge about their behavior e.g. verification, performance
evaluation. The produced knowledge may be invariants, performance evaluation measures, knowledge
from learning or statistical methods.
Rigorous knowledge generation from a system involves two steps.

1. The first step consists in modeling aspects of the system to be studied. Models may be mathemat-
ical, e.g. equations, or executable, e.g. a piece of software.

2. The second step consists in analyzing the model to extract usable knowledge. Analysis is often
carried out using computers and can lead to either declarative or procedural knowledge. For in-
stance, declarative knowledge may be the fact that “The door is always closed when the cabin
moves” or estimated latency. An example of procedural knowledge is a testing scenario generated
to validate a given system property.

Consequently, our ability to predict system properties is limited by two factors: 1) the ability to
model the studied system; 2) the ability to analyze models using computationally tractable methods.
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Note that the terms descriptive and predictive knowledge are often used to distinguish between the
knowledge of the model and the knowledge extracted by analysis. Uncertainty is directly related to our
ability to build faithful models while predictability depends on both the degree of uncertainty and the
ability to extract usable knowledge.

An important issue often overlooked by engineers, is to what extent we can predict system properties
and how their prediction is impacted by modeling and computational limitations.

Consider for example a central problem in critical systems engineering that is the prediction of
WCET (Worst Case Execution Times) and BCET (Best Case Execution Times) for a software run-
ning on a given hardware platform. The rigorous process consists in building a model of the mixed
hardware/software system and then analyzing it to estimate execution times [31]]. As already explained,
tractable models can represent only some faithful abstraction of the real system. This means that execu-
tion times of a model are safe approximations of the actual execution times. Additionally, when analysis
techniques are applied, e.g. by abstract interpretation, their effective application requires further approx-
imation. So, as shown in Figure [8] the precision of the computed WCET and BCET depends on the
precision of both modeling and analysis. It is important to note that the application of such a rigorous
approach to sophisticated architectures may result in poor precision and practically useless results.
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Figure 9: Types of knowledge used in system design

1. The first step consists in building from some specification a system model meeting the require-
ments. The main difficulty in this step may come from translating ambiguous specifications ex-
pressed in a natural language into a rigorous system model.

2. The second step involves computational complexity; it consists in extracting from the system
model sufficient knowledge for an implementation meeting the requirements.

Consequently, our ability to design systems is limited by two factors: 1) the ability to build models
meeting the requirements; 2) the ability to generate from these models, using computationally tractable
methods, sufficient knowledge for implementing a system. Thus comes the concept of designability: to
what extent is it possible to rigorously build systems?

System engineers often overlook designability issues. For complex systems, requirements elicitation
is probably the most critical design step. But even when we come up with adequate system models, de-
termining correct implementations may require significant analysis effort as illustrated by the following
example.

Consider the problem of finding trustworthy and optimal deployments of some application software
on a given multicore platform (Figure[2)). As explained in Section[2.2] a deployment is a mapping and an
associated scheduling algorithm.

Note that deployment trustworthiness and optimization can be assessed only for known WCET. How-
ever, WCET can be estimated only for known deployments. The WCET for a statement of a given task
is the sum of the WCET for execution in isolation and of the waiting time of the task. The latter depends
on the deployment function due to resource sharing with other tasks. Thus, there is a cyclic interdepen-
dency between deployments and WCET making the search for trustworthy and optimal deployments an
extremely hard problem for multicore platforms [28]. This cyclic dependency can be broken for simple
monolithic systems, e.g. flight control software for most Airbus types runs on bare metal.

Note that the general knowledge application process may be simplified when specifications are well
understood or the implementation follows a well-defined pattern. This is the case when we apply a
theorem, an algorithm or we reuse a component in the design process.

Figure O] illustrates the three different kinds of knowledge presented in this section. Awareness that
design is a knowledge generation/application process should allow a more unified and appropriate use of
knowledge to achieve trustworthiness and optimality.
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Figure 10: The principle of a knowledge-based logical architecture diagram

4.3 The Principle of Knowledge-Based Architecture

We define the two types of knowledge combined in a knowledge-based architecture.

* Design-time knowledge is essentially declarative knowledge about the properties of the designed
system. These properties may be established at some design step, using verification/analysis or by
construction, e.g. by reusing components or provably correct architecture patterns. Accountability
of the design flow allows knowing which system properties hold for the designed system

* Run-time knowledge is generated by monitoring system execution and deducing facts about the
running system such as the violation of some property or knowledge generated by application of
learning techniques.

Figure [I0] depicts the principle of a knowledge-based logical architecture diagram. The decompo-
sition into three layers is inspired from adaptive architectures. The upper layer is a repository for both
design-time and run-time knowledge. It keeps updated the run-time knowledge and combines the two
types of knowledge to support the management process of the second layer.

The middle layer includes execution and coordination mechanisms with associated methods used by
the application software to interact with the platform and the external environment. It is equipped with a
predictive system model. It receives relevant knowledge from the upper layer so as to manage objectives
and resources. Critical objectives deal with meeting hard real-time constraints and coping with critical
failures and security threats.

The bottom layer integrates basic execution and coordination mechanisms with associated methods.
It is important that their functional correctness is established at design time. This layer receives orders
mainly from the middle layer and sends back information to both middle and upper layers (in red lines).

This schematic architecture leaves many issues open.

Some issues have to do with striking the right balance between design-time and run-time knowledge
in order to achieve correctness. It is preferable that predictable critical properties be established at design
time. On the contrary, violation of properties involving a high degree of uncertainty should be detected
on-line and mitigated. Of course, other criteria may influence this balance, such as cost effectiveness and
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the sought degree of availability. Runtime enforcement of a property may require interruption of service,
e.g. using a fail-safe mechanism.

Figure [TT]illustrates two extreme cases: correctness at design time and partial correctness. The sys-
tem state space is partitioned between trustworthy states (green region) and non-trustworthy states. The
latter can be either 1) fatal states, i.e. states at which system trustworthiness is definitely compromised,
or 2) non-fatal states that can be detected early enough so that a timely recovery into a trustworthy state
is enforced at run-time using some DIR (Detection, Isolation and Recovery) mechanism. Correctness at
design time corresponds to the ideal case where all the possible system states are proven to be trustwor-
thy. In practice, avoidance of fatal states is achieved thanks to enhanced predictability in order to detect
as early as possible flawed states and determine isolation and recovery strategies. A system is deemed
correct if it always remains in trustworthy or non fatal states from which timely recovery is assured.

Other architectural issues have to do with performance and, in particular, the ability to meet hard
real-time constraints. Determining which objective to choose in order to cope with a critical situation
and planning the associated mission, may require non negligible computational power and time. It is
important to find trade-offs between response times and precision of the management and planning pro-
cesses. A crude and fast response is often better than a refined and slow one.

Finally, practical issues will ultimately weigh the relevance of the approach. These include the
implementation of knowledge-based architectures and the integration of the two types of knowledge in a
platform. For selected application areas, we need scalable knowledge management techniques allowing
enhanced predictability as well as online control methods with sufficiently low overhead footprint.

5 Discussion

We have amply explained why future autonomous systems cannot be designed as classical critical sys-
tems. Current trends require novel rigorous design methodologies for open autonomous interconnected
systems involving embedded supercomputers, Al algorithms and receiving data from the Cloud. We also
need new trustworthiness assessment techniques and standards for third party certification.

Stringent predictability requirements of safety standards such as ISO 26262 and DO 178B preclude
their application to IoT autonomous systems. Although they cannot guarantee absence of bugs, these
standards allow checking the quality of the development process and provide model-based guarantees
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that the system can cope with predictable mishaps compromising its safety. Clearly, they cannot handle
machine learning software as it cannot be checked against requirements.

We currently lack standards for autonomous systems. Although certification by independent labs
is mandatory, even for home appliances like toasters, the automotive and medical device industry are
exempted from third-party certification. Robocars are self-certified by their manufacturers following
guidelines and recommendations issued by authorities. Some autonomous car manufacturers consider
that safety can be guaranteed only through testing an extremely large number of scenarios.

Interestingly enough, a recent article by Mobileye [25] advocates model-based safety as the only
realistic approach for validating autonomous vehicles. Furthermore, it adheres to the well-understood
position that testing-based approaches will require exorbitant time and money to achieve sufficient evi-
dence of reliability [20]. Although the article only very partially tackles the multitude of issues raised by
model-based design, it has the merit of posing the problem of rigorous safety evaluation and has already
initiated controversial discussion in the media, e.g. [21]. It is a pity that the current debate focuses on
the reliability of learning techniques and associated sensory devices while it completely overlooks key
system design issues pertaining to global trustworthiness.

We believe that there is a risk that under the market and business pressure, the competent authorities
accept the generalized deployment and use of self-certified autonomous systems without any conclusive
evidence about their trustworthiness. A strong argument in favor of this can be that fully autonomous
systems may be statistically safer than semi-autonomous systems (“In the distant future, I think people
may outlaw driving cars because it’s too dangerous” — Elon Musk, May 18, 2015).

The advent of IoT is a great opportunity to reinvigorate Computing by focusing on autonomous sys-
tem design. This certainly raises technology questions but, more importantly, it requires building new
foundation that will systematically integrate the innovative results needed to face increasing environment
and mission complexity. A key idea is to compensate the lack of human intervention by adaptive control.
This is instrumental for system resilience: it allows both coping with uncertainty and managing mixed
criticality services. Our proposal for knowledge-based design seeks a compromise: preserving rigorous-
ness despite the fact that essential properties cannot be guaranteed at design time. It makes knowledge
generation and application a primary concern and aims to fully and seamlessly incorporate the adaptive
control paradigm in system architecture.
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