
DReAM: Dynamic Reconfigurable
Architecture Modeling

Rocco De Nicola1(B), Alessandro Maggi1(B), and Joseph Sifakis2(B)

1 IMT School for Advanced Studies Lucca, Lucca, Italy
{rocco.denicola,alessandro.maggi}@imtlucca.it

2 Université Grenoble Alpes, Grenoble, France
Joseph.Sifakis@univ-genoble-alpes.fr

Abstract. Modern systems evolve in unpredictable environments and
have to continuously adapt their behavior to changing conditions. The
“DReAM” (Dynamic Reconfigurable Architecture Modeling) framework,
has been designed for modeling reconfigurable dynamic systems. It pro-
vides a rule-based language, inspired from Interaction Logic, expressive
and easy to use, and encompassing all aspects of dynamicity including
parametric multi-modal coordination with creation/deletion of compo-
nents as well as mobility. Additionally, it allows the description of both
endogenous/modular and exogenous/centralized coordination styles and
sound transformations from one style to the other. The DReAM frame-
work is implemented in the form of a Java API bundled with an execu-
tion engine. It allows to develop runnable systems combining the expres-
siveness of the rule-based notation together with the flexibility of this
widespread programming language.

1 Introduction

The ever increasing complexity of modern software systems has changed the per-
spective of software designers who now have to consider new classes of systems,
consisting of a large number of interacting components and featuring complex
interaction mechanisms. These systems are usually distributed, heterogeneous,
decentralised and interdependent, and are operating in an unpredictable environ-
ments. They need to continuously adapt to changing internal or external condi-
tions in order to efficiently use of resources and to provide adequate functionality
when the external environment changes dynamically. Dynamism, indeed, plays
a crucial role in these modern systems and it can be captured as the interplay
of changes relative to the three features below:

1. the parametric description of interactions between instances of components
for a given system configuration;

2. the reconfiguration involving creation/deletion of components and manage-
ment of their interaction according to a given architectural style;

3. the migration of components between predefined architectural styles.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 13–31, 2018.
https://doi.org/10.1007/978-3-030-03424-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03424-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-03424-5_2

14 R. De Nicola et al.

Architecture modeling languages should be equipped with concepts and
mechanisms which are expressive and easy to use relatively to each of these
features.

The first feature implies the ability of describing the coordination of sys-
tems that are parametric with respect to the numbers of instances of types of
components; examples of such systems are Producer-Consumer systems with m
producers and n consumers or Ring systems consisting of n identical intercon-
nected components.

The second feature is related to the ability of reconfiguring systems by adding
or deleting components and managing their interactions taking into account
the dynamically changing conditions. In the case of a reconfigurable ring this
would require having the possibility of removing a component which self-detects
a failure and of adding it back after recovery. Added components are subject to
specific interaction rules according to their type and their position in the system.

The third aspect is related to the vision of “fluid architectures” [1] or “fluid
software” [2] and builds on the concept that applications and objects live in an
environment (we call it a motif) corresponding to an architectural style that
is characterized by specific coordination and reconfiguration rules. Dynamicity
of systems is modelled by allowing applications and objects to migrate among
motifs and such dynamic migration allows a disciplined, easy-to-implement,
management of dynamically changing coordination rules. For instance, self-
organizing systems may adopt different coordination motifs to adapt their behav-
ior and guarantee global properties.

The different approaches to architectural modeling and the new trends and
needs are reviewed in detailed surveys such as [3–7]. Here, we consider two
criteria for the classification of existing approaches: exogenous vs. endogenous
and declarative vs. imperative modeling.

Exogenous modeling considers that components are architecture-agnostic and
respect a strict separation between a component behavior and its coordination.
This approach is adopted by Architecture Description Languages (ADL) [5]. It
has the advantage of providing a global view of the coordination mechanisms
and their properties. Endogenous modeling requires adding explicit coordination
primitives in the code describing components’ behavior. Components are com-
posed through their interfaces, which expose their coordination capabilities. An
advantage of endogenous coordination is that it does not require programmers
to explicitly build a global coordination model. However, validating a coordina-
tion mechanism and studying its properties becomes much harder without such
a model.

Conjunctive modeling uses logics to express coordination constraints between
components. It allows in particular modular description as one can associate with
each component its coordination constraints. The global system coordination
can be obtained in that case as the conjunction of individual constraints of its
constituent components. Disjunctive modeling consists in explicitly specifying
system coordination as the union of the executable coordination mechanisms
such as semaphores, function call and connectors. Merits and limitations of the

DReAM: Dynamic Reconfigurable Architecture Modeling 15

two approaches are well understood. Conjunctive modeling allows abstraction
and modular description but it involves the risk of inconsistency in case there is
no architecture satisfying the specification.

This paper introduces the DReAM framework for modeling Dynamic Recon-
figurable Architectures. DReAM uses a logic-based modeling language that
encompasses the four styles mentioned above as well as the three mentioned
features. A system consists of instances of types of components organized in a
collection of motifs. Component instances can migrate between motifs depending
on global system conditions. Thus, a given type of component can be subject to
different rules when it is in a “ring” motif or in a “pipeline” one. Using motifs
allows natural description of self-organizing systems (see Fig. 1).

DReAM System
Migration Rules (1,2,3)

Migration Rules (2,3)Migration Rules (1,2)

Motif1
map1

b1 b3 b5
b2 b4

Component instances

@1

Coordination rules

Motif2
map2

b7
b6 b8

Component instances

Coordination rules

Motif3
map3

b9 b10 b11

Component instances

Coordination rules

C. Types:

@2 @3

Fig. 1. Overview of a DReAM system

Coordination rules in a motif involve an interaction part and an associated
operation. The former is modeled as a formula of the first order Interaction Logic
[8] used to specify parametric interactions between instances of types of compo-
nents. The latter specifies transfer of data between the components involved in
the interaction. In this way, we can characterize parametric coordination between
classes of components. The rules allow both conjunctive and disjunctive specifi-
cation styles. We study to what extent a mathematical correspondence can be
established between the two styles. In particular, we will see that conjunctive
specifications can be translated into equivalent disjunctive global specifications
while the converse is not true in general.

To enhance expressiveness of the different kinds of dynamism, each motif is
equipped with a map, which is a graph defining the topology of the interactions
in this motif. To parametrize coordination rules for the nodes of the map, an

16 R. De Nicola et al.

address function @ is provided defining the position @(c) in the map of any
component instance c associated with the motif. Maps are also very useful to
express mobility of components, in which case the connectivity relation of the
map represents possible moves of components. Finally the language allows the
modification of maps by adding or removing nodes and edges, as well as the
dynamic creation and deletion of component instances.

2 Static Architectures - The PIL Coordination Language

We introduce the Propositional Interaction Logic (PIL) [8] used to model inter-
actions between a given set of components. A system model is the composi-
tion of interacting components which are labelled transition systems, where the
labels are port names and the states are control locations. Components are com-
pletely coordination-agnostic, as there is no additional characterization to ports
and control locations beyond their names (e.g. we do not distinguish between
input/output ports or synchronous/asynchronous components).

Definition 1 (Component). Let P and S respectively be the domain of ports
and control locations. A component is a transition system B = (S, P, T) with

– S ⊆ S: finite set of control locations;
– P ⊆ P: finite set of ports;
– T ⊆ S × P ∪ {idle} × S: finite set of transitions. Transitions (s, p, s′) are

also denoted by s
p−→ s′; p ∈ P is the port offered for interaction, and each

transition is labelled by a different port.

A component has a special port idle /∈ P that is associated to implicit loop transi-
tions {s

idle−−→ s}s∈S. This choice is made to simplify the theoretical development
of our framework. Furthermore it is assumed that the sets of ports and control
locations of different components are disjoint.

A system definition is characterized by a set of components Bi = (Si, Pi, Ti)
for i ∈ [1, n]. The configuration Γ of a system is the set of the current control
locations of each constituent component:

Γ = {si ∈ Si}i∈[1..n] (1)

Given the set of ports P, an interaction a is any finite subset of P such
that no two ports belong to the same component. The set of all interactions is
isomorphic to I(P) = 2P .

Given a set of components B1 . . . Bn and the set of interactions γ, we can
define a system γ (B1, . . . , Bn) using the following operational semantics rule:

a ∈ γ ∀p ∈ a : si
p−→ s′

i

{si}[1..n]
a−→ {s′

i}[1..n]

(2)

DReAM: Dynamic Reconfigurable Architecture Modeling 17

where si is the current control location of component Bi, and a is an interaction
containing exactly one port for each component Bi

1.

2.1 Propositional Interaction Logic (PIL)

Let P and S be respectively the domains of ports and control locations. The
formulas of Propositional Interaction Logic PIL(P,S) are defined by the syntax:

(PIL formula) Ψ :: = p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2 (3)

where π : 2Γ �→ {true, false} is a state predicate. We use logical connectives ∨
and ⇒ with the usual meaning.

The models of the logic are interactions on P for a configuration Γ . The
semantics is defined by the following satisfaction relation |=Γ :

a |=Γ true for any a

a |=Γ p if p ∈ a

a |=Γ π if π(Γ) = true

a |=Γ Ψ1 ∧ Ψ2 if a |=Γ Ψ1 and a |=Γ Ψ2

a |=Γ ¬Ψ if a �Γ Ψ (4)

A monomial
∧

p∈I p ∧ ∧
p∈J ¬p, I ∩ J = ∅ denotes a set of interactions a s.t.:

1. the positive terms correspond to required ports for the interaction to occur;
2. the negative terms correspond to inhibited ports or to ports to which the

interaction is “closed”;
3. the non-occurring terms are optional ports.

Note that idle ports of components can appear in PIL formulas. Given a com-
ponent with ports P and idle port idle, the formula idle ≡ ∧

p∈P ¬p, while
¬idle ≡ ∨

p∈P p.
As we can describe sets of interactions using PIL formulas, we can redefine

rule (2) as follows, where Ψ is a PIL formula.

a |=Γ Ψ ∀p ∈ a : si
p−→ s′

i

{si}[1..n]
a−→ {s′

i}[1..n]

(5)

2.2 Disjunctive vs. Conjunctive Specification Style

It is shown in [8] how a function β can be defined β : I(P) → PIL(P, S)
associating with an interaction a its characteristic PIL formula β(a). For example,
if P = {p, q, r, s, t} then for the interaction {p, q}, β({p, q}) = p∧q∧¬r∧¬s∧¬t2.
For the set of interactions γ caused by the broadcast of p to ports q and r,
1 Components Bj not “actively” involved in the interaction will participate with their

idle port s.t. s′
j = sj .

2 For the sake of conciseness, from now on we will omit the conjunction operator on
monomials.

18 R. De Nicola et al.

β(γ) = p¬s¬t. For the set of interactions γ consisting of the singleton interactions
p and q, β(γ) = (p¬q ∨ ¬pq)∧¬r¬s¬t. Finally β({idle}) = ¬p¬q¬r¬s¬t as idle
is the only port not belonging to P .

Note that the definition of the function β requires knowledge of P . This
function can be naturally extended to sets of interactions γ: for γ = {a1, . . . , an},
β(γ) = β (a1) ∨ . . . ∨ β (an).

A set of interactions is specified in disjunctive style if it is described by a PIL
formula which is a disjunction of monomials. A dual style of specification is the
conjunctive style where the interactions of a system are the conjunction of PIL
formulas. A methodology for writing conjunctive specifications proposed in [8]
considers that each term of the conjunction is a formula of the form p ⇒ Ψp,
where the implication is interpreted as a causality relation: for p to be true, it is
necessary that the formula Ψp holds and this defines interaction patterns from
other components in which the port p needs to be involved.

For example, the interaction involving strong synchronization between p1,
p2 and p3 is defined by the formula f1 = (p1 ⇒ p2) ∧ (p2 ⇒ p3) ∧ (p3 ⇒ p1).
Broadcast from a sending port t towards receiving ports r1, r2 is defined by the
formula f2 = (true ⇒ t) ∧ (r1 ⇒ t) ∧ (r2 ⇒ t). The non-empty solutions are the
interactions t, tr1, tr2 and tr1r2.

Note that by applying this methodology we can associate to a component
with set of ports P a constraint

∧
p∈P (p ⇒ Ψp) that characterizes the set of

interactions where some port of the component may be involved. So if a system
consists of components C1, . . . , Cn with sets of ports P1, . . . , Pn respectively, then
the PIL formula

∧
i∈[1,n]

∧
p∈Pi

(p ⇒ Ψp) expresses a global interaction constraint.
Such a constraint can be put in disjunctive form whose monomials characterize
global interactions. Notice that the disjunctive form obtained in that manner
contains the monomial

∧
p∈P ¬p, where P =

⋃
i∈[1..n] Pi, which is satisfied by the

interaction where every component performs the idle action. This trivial remark
says that in the PIL framework it is possible to express for each component
separately its interaction constraints and compose them conjunctively to get
global disjunctive constraints.

It is also possible to put in conjunctive style a disjunctive formula Ψ spec-
ifying the interactions of a system with set of ports P . To translate Ψ into a
form

∧
p∈P (p ⇒ Ψp) we just need to choose Ψp = Ψ [p = true] obtained from Ψ

by substituting true to p. Given the inherent property of supporting the idle
interaction, the translated conjunctive formula will be equivalent to Ψ only if
the latter allows global idling. Consider broadcasting from port p to ports q and
r (Fig. 2). The possible interactions are p, pq, pr, pqr and ∅ (i.e. idling). The dis-
junctive style formula is: ¬p¬q¬r ∨ p¬q¬r ∨ pq¬r ∨ p¬qr ∨ pqr = ¬q¬r ∨ p. The
equivalent conjunctive formula is: (q ⇒ p) ∧ (r ⇒ p) that simply expresses the
causal dependency of ports q and r from p.

The example below illustrates the application of the two description styles.

Example 1 (Master-Slaves). Let us consider a simple system consisting of three
components: master, slave1 and slave2. The master performs two sequential
requests to slave1 and slave2, and then performs some computation with them.

DReAM: Dynamic Reconfigurable Architecture Modeling 19

Fig. 2. Broadcast example: disjunctive vs conjunctive specification

Figure 3 shows the representation of such components.

m00

m10

m01

m11

link1

link2

link2

link1

work

(a) The master component

waiti readyi

bindi

servei

(b) The slavei component

Fig. 3. master and slavei components

The set of allowed interactions γ for the set of components
{master, slave1, slave2} can be represented via the following PIL formula using
the disjunctive style:

Ψdisj = (link1 ∧ bind1 ∧ idles2) ∨ (link2 ∧ bind2 ∧ idles1) ∨ (work ∧ serve1 ∧ serve2)

where idlesi
≡ ¬bindi ∧ ¬servei is the idle port of slavei. Alternatively, the

same interaction patterns can be modeled using the conjunctive style:

Ψconj = (link1 ⇒ bind1) ∧ (link2 ⇒ bind2) ∧ (bind1 ⇒ link1) ∧ (bind2 ⇒ link2) ∧
(work ⇒ serve1 ∧ serve2) ∧ (serve1 ⇒ work) ∧ (serve2 ⇒ work)

The two formulas differ in the admissibility of the “no-interaction” inter-
action; the conjunctive formula Ψconj allows all components to avoid interac-
tion by performing a transition over their idle ports. To allow it, the formula
idlem ∧ idles1 ∧ idles2 must be added to the chain of disjunctions in Ψdisj .

20 R. De Nicola et al.

3 Static Architectures with Transfer of Values: PILOps

We expand the PIL framework to allow data exchange between components. In
order to do so, the definition of component will be extended with local variables
and the coordination constraints will be expressed with PILOps, which expands
PIL to a notation that is inspired by guarded commands. Finally, we extend the
definitions for disjunctive and conjunctive styles and study their connections.

3.1 PILOps Components

Definition 2 (PILOps Component). Let S be the set of all component control
locations, X the set of all local variables, and P the set of all ports. A component
is a transition system B := (S,X, P, T), where S, P and T are as in Definition 1
and X ⊆ X is a finite set local variables. As for ports and control locations, it is
assumed that sets of local variables for different PILOps components are disjoint.

A system is a set of coordinated components Bi = (Si,Xi, Pi, Ti) for i = [1, n].
The configuration Γ of a system is described by the control locations of its
components, and also the valuation function σ : X �→ V mapping local variables
to values:

Γ =
(
{si ∈ Si}i=[1..n] , σ

)
(6)

Interactions are still sets of ports belonging to different components. Using a
term of PILOps to compose components, the system configuration Γ evolves to
a new configuration Γ ′ by performing an interaction a, represented by Γ

a−→ Γ ′.

3.2 Propositional Interaction Logic with Operations (PILOps)

Let P, X and S respectively be the domains of ports, local variables and control
locations. The terms of PILOps(P,X ,S) are defined by the following syntax:

(PILOps term) Φ :: = Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ :: = p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ :: = ∅ | {δ} | Δ1 ∪ Δ2 (7)

– operators & and ‖ are associative and commutative, and & has higher prece-
dence than ‖;

– π : 2Γ �→ {true, false} is a state predicate;
– δ : 2σ �→ 2σ is an operation that transforms the valuation function σ.

The models of the logic are still interactions a on P, where the satisfaction
relation is defined by the set of rules (4) for PIL with the following extension:

a |=Γ Ψ → Δ if a |=Γ Ψ

a |=Γ Φ1 & Φ2 if a |=Γ Φ1 and a |=Γ Φ2

a |=Γ Φ1 ‖ Φ2 if a |=Γ Φ1 or a |=Γ Φ2 (8)

DReAM: Dynamic Reconfigurable Architecture Modeling 21

In other words, the operators & and ‖ for PILOps terms are equivalent to the
logical ∧ and ∨ from the interaction semantics perspective.

Operations in Δ are treated differently: operations of rules combined with
“&” are either performed all together if the associated PIL formulas hold for
a, Γ or not at all if at least one formula does not, while for rules combined with
the“‖” operator a maximal union of operations satisfying the PIL formulas will
be executed. We indicate the set of operations to be performed for Φ under a, Γ
as �Φ�a,Γ , which is defined according to the following rules:

�Ψ → Δ�a,Γ =

{
Δ if a |=Γ Ψ

∅ otherwise

�Φ1 & Φ2�a,Γ =

{
�Φ1�a,Γ ∪ �Φ2�a,Γ if a |=Γ Φ1 and a |=Γ Φ2

∅ otherwise

�Φ1 ‖ Φ2�a,Γ = �Φ1�a,Γ ∪ �Φ2�a,Γ (9)

Two PILOps terms Φ1, Φ2 are equivalent if, for any interaction a and configuration
Γ , �Φ1�a,Γ = �Φ2�a,Γ .

Axioms for PILOps. The following axioms hold for PILOps terms:

& is associative, commutative and idempotent (10)
Ψ1 → Δ1 & Ψ2 → Δ2 = Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2 (11)
Φ & true → ∅ = Φ (12)
‖ is associative, commutative and idempotent (13)
Ψ1 → Δ ‖ Ψ2 → Δ = Ψ1 ∨ Ψ2 → Δ (14)
Ψ → Δ1 ‖ Ψ → Δ2 = Ψ → Δ1 ∪ Δ2 (15)
false → Δ ‖ Φ = Φ (16)
Absorption: Φ1 ‖ Φ2 = Φ1 ‖ Φ2 ‖ Φ1 & Φ2 (17)
Distributivity: Φ & (Φ1 ‖ Φ2) = Φ & Φ1 ‖ Φ & Φ2 (18)
Normal disjunctive form (DNF): (19)
Ψ1 → Δ1 ‖ Ψ2 → Δ2 = Ψ1 ∧ ¬Ψ2 → Δ1 ‖ Ψ2 ∧ ¬Ψ1 → Δ2 ‖ Ψ1 ∧ Ψ2 → Δ1 ∪ Δ2

Note that PILOps strictly contains PIL as a formula Ψ can be represented
by Φ → ∅. The operator & is the extension of conjunction with neutral element
true → ∅ and ‖ is the extension of the disjunction with an absorption (17) and
distributivity axiom (18). The DNF is obtained by application of the axioms.
Note some important differences with PIL: the usual absorption axioms for dis-
junction and conjunction are replaced by a single absorption axiom (17) and
there is no conjunctive normal form.

22 R. De Nicola et al.

Operations. Operations δ in PILOps are assignments on local variables of com-
ponents involved in an interaction of the form x := f , where x ∈ X is the
local variable subject to the assignment and f : Vk �→ V, is a function on local
variables y1, . . . , yk (yi ∈ X) on which the assigned value depends.

We can define the semantics of the application of the assignment x := f to
the valuation function σ as:

(x := f) (σ) = σ [x �→ f (σ (y1) , . . . , σ (yk))] (20)

A set of assignment operations Δ is performed using a snapshot semantics.
When Δ contains multiple assignments on the same local variable, the results
are non-deterministic.

A PILOps term Φ is a coordination mechanism that, applied to a set of
components B1 . . . Bn, gives a system defined by the following rule:

a |=Γ Φ ∀p ∈ a : si
p−→ s′

i σ′ ∈ �Φ�a,Γ (σ)
(
{si}[1..n] , σ

)
a−→

(
{s′

i}[1..n] , σ
′
) (21)

where �Φ�a,Γ (σ) is the set of valuation functions obtained by applying the oper-
ations δ ∈ �Φ�a,Γ to σ in every possible order (using a snapshot semantics).

3.3 Disjunctive vs. Conjunctive Specification Style in PILOps

We define disjunctive and conjunctive style specification in PILOps. We associate
with p ⇒ Ψp an operation Δp to be performed when an interaction involving
p is executed according to this rule. We call the PILOps term describing this
behavior the conjunctive term

[
p, Ψp,Δp

]
= (¬p → ∅ ‖ p ∧ Ψp → Δp). Δp may

be executed when p is involved in some interaction; otherwise, no operation is
executed. The conjunction of terms of this form gives a disjunctive style formula.
Consider for instance, the conjunction of two terms:
[
p, Ψp, Δp

]
&

[
q, Ψq, Δq

]
= (¬p → ∅ ‖ p ∧ Ψp → Δp)& (¬q → ∅ ‖ q ∧ Ψq → Δq)

= ¬p ∧ ¬q → ∅ ‖ p ∧ ¬q ∧ Ψp → Δp ‖ q ∧ ¬p ∧ Ψq → Δq ‖ p ∧ q ∧ Ψp ∧ Ψq → Δp ∪ Δq

The disjunctive form obtained by application of the distributivity axiom (18)
is a union of four terms corresponding to the canonical monomials on p and q
and leading to the execution of no operation, either operation Δp, Δq or both.
It is easy to see that the conjunctive and disjunctive forms below are equivalent:

&
p∈P

(¬p → ∅ ‖ p ∧ Ψp → Δp)

�

I∪J=P

(∧

i∈I

pi ∧ Ψpi

∧

j∈J

¬pj →
⋃

i∈I

Δpi

)
where

⋃

pi∈∅
Δpi

= ∅.

The converse does not hold. Given a disjunctive specification it is not always
possible to get an equivalent conjunctive one. If we have a term of the form

DReAM: Dynamic Reconfigurable Architecture Modeling 23

�
k∈K Ψ → Δk over a set of ports P , it can be put in canonical form and will

be the union of canonical terms of the form
∧

i∈I pi

∧
j∈J ¬pj → ΔIJ . It is easy

to see that for this form to be obtained as a conjunction of causal terms a
sufficient condition is that for each port pi there exists an operation Δpi

such
that ΔIJ =

⋃
i∈I Δpi

. That is, the operation associated with a port participating
to an interaction is the same. This condition also determines the limits of the
conjunctive and compositional approach.

Example 2 (Master-Slaves). Let us expand Example 1 by attaching data transfer
between the master component and the two slave1 and slave2 components. We
assume that the master has a buffer local variable taking the value obtained by
adding the values stored in local variables mem1 and mem2 of the two respective
slaves when they all synchronize through the ports work, serve1, serve2.

The set of allowed interactions γ does not change, but using PILOps we can
characterize the desired behaviour using the disjunctive style as follows:

Φdisj = link1 ∧ bind1 ∧ idle2 → ∅ ‖ link2 ∧ bind2 ∧ idle1 → ∅ ‖
work ∧ serve1 ∧ serve2 → buffer := mem1 + mem2

The conjunctive style version equivalent to Φdisj (except for its allowance of
the idling of all components) is the following:

Φconj =
[
link1, bind1, ∅

]
&

[
link2, bind2, ∅

]
&

[
bind1, link1, ∅

]
&

[
bind2, link2, ∅

]
&

[
work, serve1 ∧ serve2, buffer := mem1 + mem2

]
&

[
serve1, work, ∅]

&
[
serve2, work, ∅]

4 The DReAM Framework

In this Section we present the DReAM framework, allowing dynamism and
reconfiguration which extends the static framework in the following manner.
Components are instances of types of components and their number can dynam-
ically change. Coordination between components in a motif, but also between
the motifs constituting a system, is expressed by the DReAM coordination lan-
guage, a first order extension of PILOps. In motifs coordination is parametrized
by the notion of map which is an abstract relation used as a reference to model
topology of the underlying architecture as well as component mobility.

4.1 Component Types and Component Instances

DReAM systems are constituted by instances of component types. Component
types in DReAM correspond to PILOps components (see Definition 2), while com-
ponent instances are obtained from a component type by renaming its control
locations, ports and local variables with a unique identifier.

To highlight the relationships between component types and their defining
sets we use a “dot notation”:

24 R. De Nicola et al.

– b.S refers to the set of control locations S of component type b (same for
ports and variables);

– b.s refers to the control location s ∈ b.S (same for ports and variables).

Definition 3 (Component instance). Let C be the domain of instance iden-
tifiers C and B = 〈b1, . . . , bn〉 be a tuple of component types where each element
is bi = (Si,Xi, Pi, Ti).

A set of component instances of type bi is represented by bi.C = {bi.c : c ∈ C},
for 1 ≤ i ≤ n and C ⊆ C, and is obtained by renaming the set of control loca-
tions, ports and local variables of the component type bi with c, that is bi.c =
(c.Si, c.Xi, c.Pi, c.Ti). Without loss of genericity, we assume that instance iden-
tifiers uniquely represent a component instance regardless of its type.

The state of a component instance b.c is therefore defined as the pair 〈c.s, c.σ〉,
where c.σ is the valuation function of the variables c.X3. We use the same
notation to denote ports, states and variables belonging to a given component
instance (e.g. c.p ∈ c.P) and assume that ports of different component instances
are still disjoint sets, i.e. c.P ∩ c′.P = ∅ for c �= c′.

Transitions for component instances c.T are obtained from the respective
component type transitions T via port name substitution, i.e. via the rule:

(s, p, s′) ∈ T

c.s
c.p−−→ c.s′

(22)

4.2 The DReAM Coordination Language

The DReAM coordination language is essentially a first-order extension of PILOps
where quantification over sets of components is introduced.

Given the domain of ports P, the DReAM coordination language is defined
by the syntax:

(DReAM term) ρ :: = Φ | D
{
Φ

} | ρ1 & ρ2 | ρ1 ‖ ρ2

(declaration) D :: = ∀c : m.b | ∃c : m.b | D1,D2

(PILOps term) Φ :: = Ψ → Δ | Φ1 & Φ2 | Φ1 ‖ Φ2

(PIL formula) Ψ :: = c.p ∈ P | π | ¬Ψ | Ψ1 ∧ Ψ2

(set of ops.) Δ :: = ∅ | {δ} | Δ1 ∪ Δ2 (23)

– Declarations define the context of the term by declaring quantified (∀|∃) com-
ponent variables (c) associated to instances of a given type (b) belonging to
a motif m;

– Operators & and ‖ are the same as the ones introduced in (7) for PILOps;
– π : 2Γ �→ {true, false} is a state predicate on the system configuration Γ ;
– δ : 2Γ �→ 2Γ is an operation that transforms the system configuration Γ .

3 Notice that when writing e.g. c.s we are omitting the explicit reference to the com-
ponent type b and using a shorter notation compared to the complete one, e.g. b.c.s.

DReAM: Dynamic Reconfigurable Architecture Modeling 25

A DReAM coordination term is well formed if its PIL formulas and associated
operations contain only component variables that are defined in its declarations.
From now on, we will only consider well formed terms.

Given a system configuration, a coordination term can be translated to an
equivalent PILOps term by performing a declaration expansion step, by expand-
ing the quantifiers and replacing component variables with actual components.

Declaration Expansion for Coordination Terms. Given that DReAM sys-
tems host finite numbers of component instances, first-order logic quantifiers
can be eliminated by enumerating every component instance of the type speci-
fied in the declaration. We thus define the declaration expansion 〈ρ〉Γ of ρ under
configuration Γ via the following rules:

〈Φ〉Γ = Φ
〈∀c : m.b

{
Φ

}〉
Γ

= &
c∗∈m.b.C

Φ [c∗/c]

〈ρ1 & ρ2〉Γ = 〈ρ1〉Γ & 〈ρ2〉Γ

〈∃c : m.b
{
Φ

}〉
Γ

=
�

c∗∈m.b.C

Φ [c∗/c]

〈ρ1 ‖ ρ2〉Γ = 〈ρ1〉Γ ‖ 〈ρ2〉Γ

〈
D1,D2

{
Φ

}〉
Γ

=
〈
D1

{ 〈
D2

{
Φ

}〉
Γ

}〉

Γ

(24)

where m.b.C is the set of component instances of type b in motif m, and [c∗/c]
is the substitution of the symbol c with the actual identifier c∗ in the associated
term.

By applying (24), any term can be transformed into a PILOps term, whose
semantics is defined in Sect. 3.2:

4.3 Motif Modeling

A motif characterizes an independent dynamic architecture involving a set of
component instances C subject to specific coordination terms parameterized by
a specific data structure called map.

Definition 4 (Motif). Let C be the domain of component instance identifiers.
A motif is a tuple m := 〈C, ρ,Map0,@0〉, where C ⊆ C is the set of component
instances assigned to the motif, ρ is the coordination term regulating interactions
and reconfigurations among them, and Map0,@0 are the initial configurations of
the map associated to the motif and of the addressing function.

We assume that each component instance is associated with exactly one motif,
i.e. m1.C ∩ m2.C = ∅.
A Map is a set of locations and a connectivity relation between them. It is the
structure over which computation is distributed and defines a system of coordi-
nates for components. It can represent a physical structure e.g. geographic map
or some conceptual structure, e.g., cellular structure of a memory. In DReAM a
map is specified as a graph Map = (N,E), where:

26 R. De Nicola et al.

– N is a set of nodes or locations (possibly infinite);
– E is a set of edges subset of N × N that defines the connectivity relation

between nodes.

The relation E defines a concept of neighborhood for components.
Component instances C in a motif and its map are related through the (par-

tial) address function @ : C → N binding each component in C to a node n ∈ N
of the map.

Maps can be used to model a physical environment where components are
moving. If the map is an array N = {(i, j)|i, j ∈ Integers} × {f, o}, the pairs
(i, j) represent coordinates and the symbols f and o stand respectively for free
and obstacle. We can model the movement of b such that @(b) = ((i, j), f) to a
position (i + a, j + b) provided that there is a path from (i, j) to (i + a, j + b)
consisting of free cells.

The configuration Γm of motif m is represented by the tuple

Γm = 〈m.C.s,m.C.σ,m.Map,m.@〉 (25)

≡ 〈{c.s}c∈m.C , {c.σ}c∈m.C ,m.Map,m.@
〉

(26)

By modifying the configuration of a motif we can model:

– Component dynamism: The set of component instances C may change by
creating/deleting or migrating components;

– Map dynamism: The set of nodes or/and the connectivity relation of a map
may change. This is the case in particular when an autonomous component
e.g. a robot, explores an unknown environment and builds a model of it;

– Mobility dynamism: The address function @ changes to express mobility of
components.

Different types of dynamism can be obtained as the combination of these three
basic types.

Reconfiguration Operations. Reconfiguration operations realize component,
map and mobility dynamism by allowing transformations of a motif configuration
at runtime.
Component dynamism can be realized using the following statements:

– create (b, n): creates an instance of type b at node n of the relevant map;
– delete (c): deletes instance c.

Map dynamism can be realized using the following statements:

– add (n): adds node n to the relevant map;
– remove (n): removes node n from the relevant map, along with incident edges

and components mapped to it;
– add (n1, n2): adds edge (n1, n2) to the relevant map;
– remove (n1, n2): removes edge (n1, n2) from the relevant map.

Mobility dynamism can be realized using the following statement:

– move (c, n): changes the position of c to node n in the relevant map.

DReAM: Dynamic Reconfigurable Architecture Modeling 27

Operational Semantics of Motifs. Terms ρ of the coordination language
are used to compose component instances in a motif. The latter can evolve
from a configuration Γm to another Γ ′′

m by performing a transition labelled with
the interaction a and characterized by the application of the set of operations
�〈ρ〉Γm

�a,Γm
iff a |= 〈ρ〉Γm

. Formally this is encoded by the following inference
rule:

a |=Γm
〈ρ〉Γm

Γm
a−→ Γ ′

m Γ ′′
m ∈ �〈ρ〉Γm

�a,Γm
(Γ ′

m)

Γm
a

Γ ′′
m

(27)

– Γm
a−→ Γ ′

m expresses the capability of the motif to evolve to a new configura-
tion through interaction a according to the simple PIL semantics of (5). By
expanding the motif configuration we have indeed:

∀c.p ∈ a : c.s
c.p−−→ c.s′ with c ∈ m.C

〈m.C.s,m.C.σ,m.Map,m.@〉 a−→ 〈m.C.s′,m.C.σ,m.Map,m.@〉
(28)

– �〈ρ〉Γm
�a,Γm

(Γ ′
m) is the set of motif configurations obtained by applying the

operations δ ∈ �〈ρ〉Γm
�a,Γm

in every possible order (evaluated using a snap-
shot semantics).

4.4 System-Level Operational Semantics

Definition 5 (DReAM system). Let B be a tuple of component types and M
a set of motifs. A DReAM system is a tuple 〈B,M,μ, Γ0〉 where μ is a migration
term and Γ0 is the initial configuration of the system.

The migration term μ is a coordination term where the operations δ are of the
form migrate (c,m, n), which move a component instance c to node n in the
map of motif m.

The global configuration of a DReAM system is simply the union of the
configurations of the set of motifs M that constitute it:

Γ =
⊔

m∈M

Γm =

〈
⋃

m

m.C.s,
⋃

m

m.C.σ,
⋃

m

m.Map,
⋃

m

m.@

〉

(29)

where we overloaded the semantics of the union operator to combine different
maps in a bigger one characterized by the union of the sets of nodes, edges and
memory locations.

The system-level semantics is described by the following inference rule:

Γm
am

Γ ′
m for m ∈ M a |=Γ ′ 〈μ〉Γ ′ Γ ′′ ∈ �〈μ〉Γ ′�a,Γ ′ (Γ ′)

Γ
a−→ Γ ′′ (30)

28 R. De Nicola et al.

– Γ ′ =
⊔

m∈M Γ ′
m;

– am ⊆ a is a subset of the global interaction a containing only ports of com-
ponent instances belonging to motif m.

By performing interaction a each motif first evolves on its own according to its
coordination term, and then the whole system changes configuration according
to the migration term μ.

The DReAM coordination language and its semantics have been implemented
in Java. The implementation involves two parts: a Java execution engine with an
associated API and a domain-specific language (DSL) with an IDE for system
modeling in DReAM. Details about the implementation as well as examples of
systems modeled in DReAM are provided in the long version of this paper [9].

5 Related Work

DReAM allows both conjunctive and disjunctive style modeling of dynamic recon-
figurable systems. It inherits the expressiveness of the coordination mechanisms
of BIP [8] as it directly encompasses multiparty interaction and extends previ-
ous work on modeling parametric architectures [10] in many respects. In DReAM
interactions involve not only transfer of values but also encompass reconfigura-
tion and self-organization by relying on the notions of maps and motifs.

When the disjunctive style is adopted, DReAM can be considered as an exoge-
nous coordination language, e.g., an ADL. A comparison with the many ADL’s
is beyond the scope of the paper. Nonetheless, to the best of our knowledge
DReAM surpasses existing exogenous coordination frameworks in that it offers
a well-thought and methodologically complete set of primitives and concepts.

When conjunctive style is adopted, DReAM can be used as an endogenous
coordination language comparable to process calculi to the extent they rely on
a single associative parallel composition operator. In DReAM this operator is
logical conjunction. It is easy to show that for existing process calculi parallel
composition is a specialization of conjunction in Interaction Logic. For CCS [11]
the causal rules are of the form p ⇒ p̄, where p and p̄ are input and output port
names corresponding to port symbol p. For CSP [12], the causal rules imple-
menting the interface parallel operator parameterized by the channel a are of
the form ai ⇒ ∧

aj∈A aj , where A is the set of ports communicating through a.
Also other richer calculi, such as π-calculus [13], that offer the possibility of

modeling dynamic infrastructure via channel passing can be modeled in DReAM
with its reconfiguration operations. Formalisms with richer communication mod-
els, such as AbC [14], offering multicasting communications by selecting groups
of partners according to predicates over their attributes, can also be rendered in
DReAM. Attribute based interaction can be simulated by our interaction mech-
anism involving guards on the exchanged values and atomic transfer of values.

DReAM was designed with autonomy in mind. As such it has some similarities
with languages for autonomous systems in particular robotic systems such as
Buzz [15,16]. Nonetheless, our framework is more general as it does not adopt
assumptions about timed synchronous cyclic behavior of components.

DReAM: Dynamic Reconfigurable Architecture Modeling 29

The relationships between our approach and graph based architectural
description languages such as ADR [17] and HDR [18] will be the subject of
future work.

Finally, DReAM shares the same conceptual framework with DR-BIP [19].
The latter is an extension of BIP with component dynamism and reconfiguration.
As such it adopts an exogenous and imperative approach based on the use of
connectors. A detailed comparison between DReAM and DR-BIP will be the
object of a forthcoming publication.

6 Discussion

We have proposed a framework for the description of dynamic reconfigurable
systems supporting their incremental construction according to a hierarchy of
structuring concepts going from components to sets of motifs forming a system.
Such a hierarchy guarantees enhanced expressiveness and incremental modifia-
bility thanks to the following features:

Incremental modifiability of models at all levels: The interaction rules
associated with a component in a motif can be modified and composed indepen-
dently. Components can be defined independently of the maps and their context
of use in a motif. Self-organization can be modeled by combining motifs, i.e.,
system modes for which particular interaction rules hold.

Expressiveness: This is inherited from BIP as the possibility to directly
specify any kind of static coordination without modifying the involved compo-
nents or adding extra coordinating components. Regarding dynamic coordina-
tion, the proposed language directly encompasses the identified levels of dynam-
icity by supporting component types and the expressive power of first order logic.
Nonetheless, explicit handling of quantifiers is limited to declarations that link
component names to coordinates.

Flexible Semantics: The language relies on an operational semantics that
admits a variety of implementations between two extreme cases. One consists
in precomputing a global interaction constraint applied to an unstructured set
of component instances and choosing the enabled interactions and the corre-
sponding operations for a given configuration. The other consists in computing
separately interactions for motifs or groups and combining them.

The results about the relationship between conjunctive and disjunctive styles
show that while they are both equally expressive for interactions without data
transfer, the disjunctive style is more expressive when interactions involve data
transfer. We plan to further investigate this relationship to characterize more
precisely this limitation that seems to be inherent to modular specification. All
results are too recent and many open avenues need to be explored. The language
and its tools should be evaluated against real-life mobile applications such as
autonomous transport systems, swarm robotics or telecommunication systems.

30 R. De Nicola et al.

References

1. Garlan, D.: Software architecture: a travelogue. In: Proceedings of the on Future
of Software Engineering, pp. 29–39. ACM (2014)

2. Taivalsaari, A., Mikkonen, T., Systä, K.: Liquid software manifesto: the era of
multiple device ownership and its implications for software architecture. In: Pro-
ceedings of the 38th Computer Software and Applications Conference, pp. 338–343.
IEEE (2014)

3. Bradbury, J.S.: Organizing definitions and formalisms for dynamic software archi-
tectures. Technical report, vol. 477 (2004)

4. Oreizy, P., et al.: Issues in modeling and analyzing dynamic software architectures.
In: Proceedings of the International Workshop on the Role of Software Architecture
in Testing and Analysis, pp. 54–57 (1998)

5. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

6. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: A
classification of dynamic reconfiguration in component and connector architec-
ture description languages. In: Pre-proceedings of the 4th International Workshop
on Interplay of Model-Driven and Component-Based Software Engineering, p. 13
(2017)

7. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description
from under the technology lamppost. Inf. Softw. Technol. 49(1), 12–31 (2007)

8. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Comput. 57(10), 1315–1330 (2008)

9. De Nicola, R., Maggi, A., Sifakis, J.: Dream: Dynamic reconfigurable architecture
modeling, arXiv preprint: http://arxiv.org/abs/1805.03724 (2018)

10. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012.
LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30564-1 1

11. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980).
https://doi.org/10.1007/3-540-10235-3

12. Brookes, S.D., Hoare, C.A., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

14. Alrahman, Y.A., De Nicola, R., Loreti, M.: On the power of attribute-based com-
munication. In: Proceedings of the Formal Techniques for Distributed Objects,
Components, and Systems - FORTE 2016–36th IFIP WG 6.1 Inernational Confer-
ence, pp. 1–18 (2016)

15. Pinciroli, C., Lee-Brown, A., Beltrame, G.: Buzz: An extensible program-
ming language for self-organizing heterogeneous robot swarms, arXiv preprint
arXiv:1507.05946 (2015)

16. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for hetero-
geneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)

17. Bruni, R., Lafuente, A.L., Montanari, U., Tuosto, E.: Style based reconfigurations
of software architectures. Universita di Pisa, Technical report TR-07-17 (2007)

http://arxiv.org/abs/1805.03724
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/3-540-10235-3
http://arxiv.org/abs/1507.05946

DReAM: Dynamic Reconfigurable Architecture Modeling 31

18. Bruni, R., Lluch-Lafuente, A., Montanari, U.: Hierarchical design rewriting with
Maude. Electron. Notes Theor. Comput. Sci. 238(3), 45–62 (2009)

19. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in program-
ming dynamic reconfigurable systems: methodology and solution in DR-BIP. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 304–320.
Springer, Cham (2018)

