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Abstract. Architectures depict design principles: paradigms that can be understood by all, allow thinking on
a higher plane and avoiding low-level mistakes. They provide means for ensuring correctness by construction
by enforcing global properties characterizing the coordination between components. An architecture can be
considered as an operatorA that, applied to a set of components B, builds a composite componentA(B) meeting
a characteristic property�. Architecture composability is a basic and commonproblem facedby systemdesigners.
In this paper, we propose a formal and general framework for architecture composability based on an associative,
commutative and idempotent architecture composition operator ⊕. The main result is that if two architectures
A1 and A2 enforce respectively safety properties �1 and �2, the architecture A1 ⊕ A2 enforces the property
�1 ∧ �2, that is both properties are preserved by architecture composition. We also establish preservation of
liveness properties by architecture composition. The presented results are illustrated by a running example and
a case study.
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1. Introduction

Architectures depict design principles: paradigms that can be understood by all, allow thinking on a higher plane
and avoiding low-level mistakes. They providemeans for ensuring correctness by construction by enforcing global
properties characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity and develop systems cost-effectively.
Systemdevelopers extensively use libraries of reference architectures ensuring both functional and non-functional
properties, for example fault-tolerant architectures, architectures for resourcemanagement andQoScontrol, time-
triggered architectures, security architectures and adaptive architectures. Nonetheless, we still lack theory and
methods for combining architectures in principled and disciplined fully correct-by-construction design flows.
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Informally speaking, an architecture can be considered as an operatorA that, applied to a set of componentsB
builds a composite componentA(B) meeting a characteristic property�. In a design process, it is often necessary
to combine more than one architectural solution on a set of components to achieve a global property. System
engineers use libraries of solutions to specific problems and they need methods for combining them without
jeopardizing their characteristic properties. For example, a fault-tolerant architecture combines a set of features
building into the environment protections against trustworthiness violations. These include (1) triple modular
redundancy mechanisms ensuring continuous operation in case of single component failure; (2) hardware checks
to be sure that programs use data only in their defined regions of memory, so that there is no possibility of
interference; (3) default to least privilege (least sharing) to enforce file protection. Is it possible to obtain a single
fault-tolerant architecture consistently combining these features? The key issue here is architecture composability
in the integrated solution, which can be formulated as follows:

Consider two architectures A1 and A2, enforcing respectively properties �1 and �2 on a set of components B. That is, A1(B) and
A2(B) satisfy respectively the properties �1 and �2. Is it possible to find an architectureA1 ⊕ A2 such that the composite component
(A1 ⊕ A2)(B) meets �1 ∧ �2? For instance, if A1 ensures mutual exclusion and A2 enforces a scheduling policy is it possible to find
an architecture on the same set of components that satisfies both properties?

Architecture composability is a very basic and common problem faced by system designers. Manifestations
of lack of composability are also known as feature interaction in telecommunication systems [CKMRM03].

The development of a formal framework dealing with architecture composability implies a rigorous definition
of the concept of architecture aswell as of the underlying concepts of components and their interaction. The paper
proposes such a framework based on results showing how architectures can be used for achieving correctness
by construction in a rigorous component-based design flow [Sif12]. The underlying theory of components and
their interaction is inspired from BIP [BS07]. BIP is a component framework rooted in well-defined operational
semantics. It proposes an expressive and elegant notion of interaction models for component composition.
Interaction models can be studied as sets of Boolean constraints expressing interactions between components.
BIPhas been fully implemented in a language and the supporting toolset, including compilers and code generators
[BBB+11].

BIP allows the description of composite components as an expression γ (B), where B is a set of atomic
components and γ is an interaction model. Atomic components are characterized by their behaviour specified
as transition systems.

An interactionmodel γ is a set of interactions. Each interaction is a set of actions of the composed components,
executed synchronously. The meaning of γ can be specified by using operational semantics rules defining the
transition relation of the composite component γ (B) in terms of transition relations of the composed components
B. Intuitively, for each interaction a ∈ γ , γ (B) can execute a transition labelled by a iff the components involved
in a can execute the corresponding transitions labelled by the actions composing a, whereas other components
do not move. A formal definition is given in Sect. 2 (Definition 2).

Given a set of components B an architecture is an operator A such that A(B) = γ (C,B), where γ is an
interaction model and C a set of coordinating components, and A(B) satisfies a characteristic property �A.

According to this definition, an architecture A is a solution to a specific coordination problem, specified by
�A, by using an interaction model specified by γ and C. For instance, for distributed architectures, interactions
are point-to-point by asynchronous message passing. Other architectures adopt a specific topology (e.g. ring
architectures, hierarchically structured architectures). These restrictions entail reduced expressiveness of the
interaction model γ that must be compensated by using the additional set of components C for coordination.
The characteristic property �A assigns a meaning to the architecture that can be informally understood without
the need for explicit formalization (e.g. mutual exclusion, scheduling policy, clock synchronization).

Our contributions.Wepropose a general formal framework for architecture composability based on a composition
operator ‘⊕’ which is associative, commutative and idempotent. We consider that characteristic properties are
the conjunction of safety properties and liveness properties. We show that if two architectures A1 and A2 enforce
respectively safety properties �1 and �2, the architecture A1 ⊕ A2 enforces �1 ∧ �2, that is both properties
are preserved by architecture composition. The concept of liveness for architectures derives from the Büchi-
acceptance condition.We designate a subset of states of each coordinator as “idle”, meaning that it is permissible
for the coordinator to remain in such a state forever. Otherwise, the controller must execute infinitely often. The
main result guaranteeing liveness preservation is based on a “pairwise non-interference” check of the composed
architectures that can be performed algorithmically, in the finite-state case.
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This paper extends our previous work [ABB+14a] with the following additional contributions:

1. We introduce a notion of partial application of architectures and provide corresponding generalisations of the
key results in [ABB+14a];

2. We provide an additional example of hierarchical architecture application, enforcing fairmutual exclusion on
an arbitrary number of tasks;

3. Finally, we provide full proofs of all the results in the paper.

The paper is structured as follows. Section 2 introduces the notions of component and architecture, as well as
the corresponding composition operators. Section 3 presents the key results about the preservation of safety and
liveness properties. Section 4 illustrates the application of our framework on an Elevator control use case. Some
related work is discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2. The theory of architectures

2.1. Components and architectures

In order to consider component-based systems, we have to define the notions of components and composition.
We use the BIP notions introduced in [BS07].

Definition 1 (Components) A component is a Labelled Transition System B � (Q, q0,P ,−→), where Q is a set of
states, q0 ∈ Q is the initial state, P is a set of ports and −→ ⊆ Q × (2P\{∅}) × Q is a transition relation. Each
transition is labelled by an interaction ∅ 	� a ⊆ P . We call P the interface of B .

We use the notations q a−→ q ′, q a−→ and q 	 a−→ as usual.We also denote byQB , q0B ,PB and−→B the constituents
of a component B .

In the rest of the paper, we will simplify the notation by writing pq instead of {p, q} to denote an interaction,
whenever the context allows doing so without introducing ambiguity.

Component composition in BIP is achieved through a synchronisation operator, parameterized by an inter-
action model, which is a set of interactions representing allowed synchronisations among the ports of the partic-
ipating components.

Definition 2 (Interaction model) Let B � {B1, . . . ,Bn } be a finite set of components with Bi � (Qi , q0i ,Pi ,−→),1

such that all Pi are pairwise disjoint, i.e. ∀ i 	� j , Pi ∩ Pj � ∅. Let P � ⋃n
i�1 Pi . An interaction model over P is

a set γ ⊆ 2P . We call the set of ports P the domain of the interaction model.
The composition of B with the interaction model γ is given by the component γ (B) � (Q, q0,P ,−→), where

Q � ∏n
i�1 Qi , q0 � q01 . . . q0n and −→ is the minimal transition relation inductively defined by the rule

∅ 	� a ∈ γ qi
a∩Pi−−−→ q ′

i (if a ∩ Pi 	� ∅) qi � q ′
i (if a ∩ Pi � ∅)

q1 . . . qn
a−→ q ′

1 . . . q ′
n

. (1)

Notice that, although we require transition labels in components to be non-empty, we do allow the empty
interaction to be part of an interaction model. According to (1), the empty interaction ∅ ∈ γ does not have any
effect on the composed component γ (B). However, it will be useful for the definitions of architecture application
and composition as we will discuss below (Remark 1 on page 6).

In the sequel, when speaking of a set of components B � {B1, . . . ,Bn }, we will always assume that it satisfies
all the conditions of Definition 2.

We are now in position to define the notion of architecture. An architecture can be seen as an operator that
transforms a set of components into a new composite component. It generalises BIP interaction models, by
introducing stateful coordinating components. The interface of an architecture is a set of ports that comprises
both the ports of the coordinating components and additional dangling ports that must belong to operand
components, to which the architecture is applied.

1 Here and below, we skip the index on the transition relation −→, since it is always clear from the context.
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Fig. 1. A diagram illustrating the relation between ports of an architecture and of its operand components: the inner circle represents the
ports of the coordinating components, the “ears” represent the ports of operand components, the representation of the architecture interface
is delimited by the solid line

Definition 3 (Architecture) An architecture is a tuple A � (C,PA, γ ), where C is a finite set of coordinating
components with pairwise disjoint sets of ports, PA is a set of ports, such that

⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA is

an interaction model over PA.

An architecture A can be applied to any set of components B that contains all the dangling ports of A.
Intuitively, an architecture enforces coordination constraints on the components in B. The interface PA of an
architecture A contains all ports of the coordinating components C and some additional ports, which must
belong to the components in B as illustrated in Fig. 1. In the application A(B), the ports belonging to PA can
only participate in the interactions defined by the interaction model γ of A. Ports that do not belong to PA are
not restricted and can participate in any interaction.

In particular, they can join the interactions in γ (see (2) below).

Definition 4 (Application of anarchitecture)LetA � (C,PA, γ ) be anarchitecture and letB bea set of components,
such that

⋃
B∈B PB ∩ ⋃

C∈C PC � ∅ and PA ⊆ P �� ⋃
B∈B∪C PB . The application of an architecture A to the

components B is the component

A(B) ��
(
γ �� 2P\PA

)
(C ∪ B), (2)

where, for interaction models γ ′ and γ ′′ over disjoint domains P ′ and P ′′ respectively,

γ ′ �� γ ′′ �� {a ′ ∪ a ′′ | a ′ ∈ γ ′, a ′′ ∈ γ ′′}
is an interaction model over P ′ ∪ P ′′.

Notice that, when the interface of the architecture covers all ports of the system, i.e. P � PA, we have
2P\PA � {∅} and the only interactions allowed in A(B) are those belonging to γ .

Example 1 (Mutual exclusion)Consider the componentsB1 andB2 inFig. 2a. In order to ensuremutual exclusion
of their work states, we apply the architecture A12 � ({C12},P12, γ12), where C12 is shown in Fig. 2b, P12 �
{b1, b2, b12, f1, f2, f12} and γ12 � {∅, b1b12, b2b12, f1f12, f2f12

}
.

The interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only possible interactions are those
explicitly belonging to γ12. Assuming that the initial states ofB1 andB2 are sleep, and that ofC12 is free, neither
of the two states (free, work, work) and (taken, work, work) is reachable, i.e. the mutual exclusion property
(q1 	� work) ∨ (q2 	� work)—where q1 and q2 are state variables of B1 and B2 respectively—holds in A12(B1,B2).

LetB3 be a third component, similar toB1 andB2, with the interface {b3, f3}. Since b3, f3 	∈ P12, the interaction
model of the applicationA12(B1,B2,B3) is γ12 �� {∅, b3, f3

}
. (Weomit the interaction b3f3, since b3 and f3 are never

enabled in the same state and, therefore, cannot be fired simultaneously.) Thus, the componentA12(B1,B2,B3) is
the unrestricted product of the componentsA12(B1,B2) andB3. The application ofA12 enforces mutual exclusion
between the work states of B1 and B2, but does not affect the behaviour of B3.
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Fig. 2. Component (a) and coordinator (b) for Example 1 (the initial states of the components are shaded)

For theproofs of the results provided in the rest of this paper, itwill be convenient to assume that anarchitecture
has precisely one coordinating component, i.e. C � {C }. In most cases, this can be done without loss of generality
by noticing that the proof argument can be repeated for all coordinating components, since an architecture can
have only a finite number of such. However, this assumption can be formalized explicitly by the following lemma.

Lemma 1 Let A � (C,PA, γ ) be an architecture and denote by γC
�� {a ∩ PC | a ∈ γ }, with PC � ⋃

C∈C PC , the
projection of γ onto the ports of the coordinating components of A. Consider an architecture A′ � ({C ′},PA, γ ),
where C ′ � γC(C). For any set of components B, satisfying the conditions of Definition 4, we have A(B) � A′(B).

Proof. First of all, notice that, by Definition 2, PC ′ � PC . Hence, the conditions of Definition 3 are satisfied
and A′ is indeed an architecture. Furthermore, B satisfies the conditions of Definition 4 w.r.t. A′. Hence, the
component A′(B) is well defined.

Clearly the state spaces, initial states and interfaces of both components coincide. Thus we only have to prove
that so do the transition relations. Let us assume that C � {C1, . . . ,Cm} and B � {B1, . . . ,Bn }. We will use q̃i , q̃ ′

i
to denote the states of Ci and qi , q ′

i to denote the states of Bi .
By Definition 4, a transition q̃1 . . . q̃mq1 . . . qn

a−→ q̃ ′
1 . . . q̃ ′

mq ′
1 . . . q ′

n is possible in A(B) iff a 	� ∅ and

1. for i ∈ [1,m], q̃i
a∩PCi−−−−→ q̃ ′

i is possible in Ci , or a ∩ PCi
� ∅ and q̃i � q̃ ′

i ;

2. for i ∈ [1,n], qi
a∩PBi−−−−→ q ′

i is possible in Bi , or a ∩ PBi
� ∅ and qi � q ′

i ;

3. a ∈ γ �� 2P\PA ;

where P � ⋃
B∈B∪C PB .

Similarly, the above transition is possible in A′(B) iff a 	� ∅ and

1. q̃1 . . . q̃m
a∩PC ′−−−−→ q̃ ′

1 . . . q̃ ′
m is possible in C ′, or a ∩ PC ′ � ∅ and q̃i � q̃ ′

i , for all i ∈ [1,m] ;

2. for i ∈ [1,n], qi
a∩PBi−−−−→ q ′

i is possible in Bi , or a ∩ PBi
� ∅ and qi � q ′

i ;

3. a ∈ γ �� 2P\PA .
If a ∩ PC ′ 	� ∅, the transition in condition 1 above is possible in C ′ iff

4. a ∩ PC ′ ∈ γC and,

5. for i ∈ [1,m], q̃i
a∩PCi−−−−→ q̃ ′

i is possible in Ci , or a ∩ PCi
� ∅ and q̃i � q̃ ′

i .

Consider a ∈ γ �� 2P\PA . SincePC ′ � PC ⊆ PA, we have a∩PC ′ � a∩PC � (a∩PA)∩PC . Since a∩PA ∈ γ ,
we have a ∩ PC ′ ∈ γC , which concludes the proof. �
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2.2. Composition of architectures

As will be further illustrated in Sect. 3, architectures can be intuitively understood as enforcing constraints on the
global state space of the system [BS11,Weg96].More precisely, component coordination is realized by limiting the
allowed interactions, thus enforcing constraints on the transitions components can take. From this perspective,
architecture composition can be understood as the conjunction of their respective constraints. This intuitive
notion is formalized by the two definitions below.

Definition 5 (Characteristic predicates [BS10]) Denote B � {true, false} and let γ ⊆ 2P be an interaction model
over a set of ports P . Its characteristic predicate (ϕγ : BP → B) ∈ B[P ] is defined by letting

ϕγ
��

∨

a∈γ

(∧

p∈a
p ∧

∧

p 	∈a
p
)
.

For any valuation v : P → B, ϕγ (v ) � true if and only if av
�� {p ∈ P | v (p) � true} ∈ γ . In such case, we

say that the interaction av satisfies the predicate ϕ (denoted av |� ϕ). A predicate ϕ ∈ B[P ] uniquely defines an
interaction model γϕ , such that ϕγϕ

≡ ϕ.2

Example 2 (Mutual exclusion (contd.)) Consider the interaction model

γ12 � {∅, b1b12, b2b12, f1f12, f2f12
}

from Example 1. The domain of γ12 is P12 � {b1, b2, b12, f1, f2, f12}. Hence, the characteristic predicate of γ12 is
(omitting the conjunction operator):

ϕγ12 � b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12
∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

≡ (b1 ⇒ b12) ∧ (f1 ⇒ f12) ∧ (b2 ⇒ b12) ∧ (f2 ⇒ f12)

∧ (b12 ⇒ b1 XOR b2) ∧ (f12 ⇒ f1 XOR f2) ∧ (b12 ⇒ f12) . (3)

Intuitively, the implication b1 ⇒ b12, for instance, means that, for the port b1 to be fired, it is necessary that
the port b12 be fired in the same interaction [BS10].

Definition 6 (Architecture composition) Let Ai � (Ci ,PAi
, γi ), for i � 1, 2 be two architectures. The composition

of A1 and A2 is an architecture A1 ⊕ A2 � (C1 ∪ C2,PA1 ∪ PA2 , γϕ), where ϕ � ϕγ1 ∧ ϕγ2 .

The following lemma states that the interaction model of the composed component consists precisely of
the interactions a such that the projections of a onto the interfaces of the composed architectures (A1 and A2,
resp.) belong to the corresponding interaction models (γ1 and γ2, resp.). In other words, these are precisely the
interactions that satisfy the coordination constraints enforced by both composed architectures. In particular, as
we will show in Theorem 1 (Sect. 3), this means that, for two architecturesA1,A2 and a set of components B, the
execution traces allowed by A1 ⊕ A2 on B are those that are allowed by both A1 and A2, which guarantees the
preservation of safety properties by the composition of architectures.

Lemma 2 Consider two interaction models γi ⊆ 2Pi , for i � 1, 2, and let ϕ � ϕγ1 ∧ ϕγ2 . For an interaction
a ⊆ P1 ∪ P2, a ∈ γϕ iff a ∩ Pi ∈ γi , for i � 1, 2.

Proof. Let v (p) � (p ∈ a) be a valuation P1 ∪ P2 → B corresponding to a. We have a |� ϕγ1 ∧ ϕγ2 iff
(ϕγ1 ∧ ϕγ2 )(v ) � true, which is equivalent to ϕγ1 (v ) � true and ϕγ2 (v ) � true. Consider a restriction v ′ : P1 → B

of v to P1, defined by putting ∀ p ∈ P1, v ′(p) � v (p). Since the variables p ∈ P2\P1 do not appear in ϕγ1 , we have
ϕγ1 (v ) � true iff ϕγ1 (v

′) � true, i.e. a ∩ P1 ∈ γ1. The same holds for a ∩ P2 ∈ γ2. �

Remark 1 Every interaction allowed by A1 ⊕ A2 must comprise both an interaction allowed by A1 and an
interaction allowed by A2. To allow architecture A1 to progress independently from A2, one must have ∅ ∈ γ2
and vice-versa.

2 Here and below, we use ‘≡’ to denote logical equivalence of predicates.
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Lemma 3 Consider a set of componentsB and two architecturesAi � (Ci ,PAi
, γi ), for i � 1, 2. Let q̃1q̃2q

a−→ q̃ ′
1q̃

′
2q

′
be a transition in (A1 ⊕ A2)(B), where, for i � 1, 2, q̃i , q̃ ′

i ∈ ∏
C∈Ci QC and q, q ′ ∈ ∏

B∈B QB . Then, for i � 1, 2, if

a ∩ (PAi
∪ P ) 	� ∅, then q̃iq a∩(PAi ∪P )−−−−−−→ q̃ ′

iq
′ is a transition in Ai (B), where P � ⋃

B∈B PB .

Proof. By Lemma 1, we can assume that each of the two architectures has only one coordinating component, i.e.
Ci � {Ci }, for i � 1, 2.

By Definition 6, a ∩ (PA1 ∪ PA2 ) |� ϕγ1 ∧ ϕγ2 . By Lemma 2, a ∩ PA1 ∈ γ1. Hence,

ã �� a ∩ (PA1 ∪ P ) � (
a ∩ PA1

) ∪ (
a ∩ (P\PA1 )

) ∈ (
γ1 �� 2P\PA1

)
.

By the assumption of the lemma, ã 	� ∅. Furthermore, since q̃1q̃2q
a−→ q̃ ′

1q̃
′
2q

′, we have by (1),
{

q̃1
a∩PC1−−−−→ q̃ ′

1, if a ∩ PC1 	� ∅,

q̃1 � q̃ ′
1, if a ∩ PC1 � ∅,

and, for i ∈ [1,n],

{
qi

a∩Pi−−−→ q ′
i , if a ∩ Pi 	� ∅,

qi � q ′
i , if a ∩ Pi � ∅.

Since PC1 ⊆ PA1 , we have ã ∩ PC1 � a ∩ PC1 . Similarly, for any i ∈ [1,n], Pi ⊆ P , hence ã ∩ Pi � a ∩ Pi .

Thus, all premises of the instance of the rule (1) for ã in A1(B) are satisfied and we have q̃1q
ã−→ q̃ ′

1q
′ in A1(B).

For A2(B), the result is obtained by a symmetrical argument. �

Proposition 1 (Properties of ⊕) Architecture composition ⊕ is commutative and associative; it is idempotent if all
coordinating components are deterministic; Aid � (∅,∅, {∅}) is its neutral element, i.e. for any architecture A, we
have A ⊕ Aid � A. Furthermore, for any component B , we have Aid (B ) � B .

Sketch of the proof Commutativity and associativity follow from the corresponding properties of set union and
boolean conjunction. Suppose we have two architectures A � A′. As illustrated by Lemma 1, this does not
necessarily mean that their sets of coordinating components coincide. However, if all the involved coordinating
components aredeterministic, then, in any stateof (A⊕A′)(B), botharchitectureswill impose the same restrictions,
enabling the same interactions between the coordinating and operand components. Hence, we have (A⊕A′)(B) �
A(B) � A′(B). Since this holds for any set of components B, we conclude that A ⊕ A′ � A � A′. The properties
of Aid follow immediately from the definitions of architecture application and composition. �

Notice that, by (2), for an arbitrary set of components B with P � ⋃
B∈B PB , we have Aid (B) � (

2P
)
(B) (cf.

Definition 2).

Example 3 (Mutual exclusion (contd.)) Building upon Example 1, letB3 be a third component, similar toB1 and
B2, with the interface {b3, f3}.We define two additional architecturesA13 andA23 similar toA12: for i � 1, 2,Ai3 �
({Ci3},Pi3, γi3), where, up to the renaming of ports, Ci3 is the same as C12 in Fig. 2b, Pi3 � {bi , b3, bi3, fi , f3, fi3}
and γi3 � {∅, bibi3, b3bi3, fi fi3, f3fi3

}
.

By considering, for ϕγ13 and ϕγ23 , expressions similar to (3), it is easy to compute ϕγ12 ∧ ϕγ13 ∧ ϕγ23 as the
conjunction of the following implications:

b1 ⇒ b12 ∧ b13, f1 ⇒ f12 ∧ f13, b12 ⇒ b1 XOR b2, f12 ⇒ f1 XOR f2, b12 ⇒ f12,

b2 ⇒ b12 ∧ b23, f2 ⇒ f12 ∧ f23, b13 ⇒ b1 XOR b3, f13 ⇒ f1 XOR f3, b13 ⇒ f13,

b3 ⇒ b13 ∧ b23, f3 ⇒ f13 ∧ f23, b23 ⇒ b2 XOR b3, f23 ⇒ f2 XOR f3, b23 ⇒ f23.

Finally, it is straightforward to obtain the interaction model for A12 ⊕ A13 ⊕ A23:
{∅, b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23

}
.

Notice that this interaction model is different from the union of the interaction models of the three architectures.
Assuming that the initial states of B1, B2 and B3 are sleep, whereas those of C12, C13 and C23 are free,

one can observe that none of the states (·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work) and (·, ·, ·, ·, work, work) are
reachable in (A12 ⊕ A13 ⊕ A23)(B1,B2,B3). Thus, we conclude that the composition of the three architectures,
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(A12 ⊕ A13 ⊕ A23)(B1,B2,B3), enforces mutual exclusion among the work states of all three components. In
Sect. 3.1, we provide a general result stating that architecture composition preserves the enforced state properties.

2.3. Hierarchical composition of architectures

The following proposition establishes a link between the architecture composition as defined in the previous
section and the usual notion of functional composition.

Proposition 2 (Relation between notions of composition) Let B be a set of components and let A1 � (C1,PA1 , γ1)

and A2 � (C2,PA2 , γ2) be two architectures, such that 1) PA1 ⊆ P1
�� ⋃

B∈B∪C1 PB and 2) PA2 ⊆ P2
��

⋃
B∈B∪C1∪C2 PB . Then A2

(
A1(B)

)
is defined and equal to (A1 ⊕ A2)(B).

Proof. Clearly, the state spaces, initial states and interfaces of both components coincide. Thus we only have to
prove that so do the transition relations. By Lemma 1, we assume C1 � {C1}, C2 � {C2} and B � {B1, . . . ,Bn }.

By Definition 4 a transition qC1qC2q1 . . . qn
a−→ q ′

C1
q ′
C2
q ′
1 . . . q ′

n is possible in A2
(
A1(B)

)
iff a 	� ∅ and

1. qC2

a∩PC2−−−−→ q ′
C2

is possible in C2, or a ∩ PC2 � ∅ and qC2 � q ′
C2
;

2. qC1q1 . . . qn
a∩P1−−−→ q ′

C1
q ′
1 . . . q ′

n is possible in A1(B), or a ∩ P1 � ∅ and qC1q1 . . . qn � q ′
C1
q ′
1 . . . q ′

n ;

3. a ∈ γ2 �� 2P2\PA2 .
If a ∩ P1 	� ∅, the transition in condition 1 above is possible in A1(B) iff
4. qC1

a∩PC1−−−−→ q ′
C1

is possible in C1, or a ∩ PC1 � ∅ and qC1 � q ′
C1
;

5. for i ∈ [1,n], qi
a∩PBi−−−−→ q ′

i is possible in Bi , or a ∩ PBi
� ∅ and qi � q ′

i ;

6. a ∩ P1 ∈ γ1 �� 2P1\PA1 .

Similarly, the above transition is possible in (A1 ⊕ A2)(B) iff a 	� ∅ and

1. for i � 1, 2, qCi

a∩PCi−−−−→ q ′
Ci

is possible in Ci , or a ∩ PCi
� ∅ and qCi

� q ′
Ci
;

2. for i ∈ [1,n], qi
a∩PBi−−−−→ q ′

i is possible in Bi , or a ∩ PBi
� ∅ and qi � q ′

i ;

3. a ∈ γA1⊕A2 �� 2P2\(PA1∪PA2 ).

Thus, to prove the proposition it is sufficient to show that a ∈ γA1⊕A2 �� 2P2\(PA1∪PA2 ) iff a ∈ γ2 �� 2P2\PA2

and a ∩ P1 ∈ γ1 �� 2P1\PA1 .
For a ⊆ P2, we have a ∈ γA1⊕A2 �� 2P2\(PA1∪PA2 ) iff a∩ (PA1 ∪PA2 ) ∈ γA1⊕A2 , i.e. a∩ (PA1 ∪PA2 ) |� ϕγ1 ∧ ϕγ2 .

By Lemma 2, this is equivalent to a∩ (PA1 ∪PA2 )∩PA1 � a∩PA1 ∈ γ1 and a∩ (PA1 ∪PA2 )∩PA2 � a∩PA2 ∈ γ2.
Since a ⊆ P2, we have a ∩ PA2 ∈ γ2 iff a ∈ γ2 �� 2P2\PA2 . Finally, since PA1 ⊆ P1, we have a ∩ PA1 ∈ γ1 iff
a ∩ P1 ∈ γ1 �� 2P1\PA1 . �

The first condition in Proposition 2 states that A1 can be applied to the behaviours in B (cf. Definition 4).
Similarly, the second condition states thatA2 can be applied toA1(B). Note that, when PAi

⊆ ⋃
B∈B∪Ci PB holds

for both i ∈ {1, 2}—for i � 1, this is the first condition of Proposition 2—and none of the architectures involves
the ports of the other, i.e. PAi

∩ ⋃
C∈Cj PC � ∅, for i 	� j ∈ {1, 2}, then the two architectures are independent

and their composition is commutative: A2
(
A1(B)

) � (A1 ⊕ A2)(B) � A1
(
A2(B)

)
.

The following proposition shows that the application of an architecture only affects the components that have
ports belonging to its interface. Components that do not involve such ports are not affected, even if they interact
with the operand components of the architecture. In Proposition 3, such potential interactions are modelled
by applying the architecture A2, which also provides a context for the comparison of the resulting systems. In
the special case, where such independent components do not interact with the architecture operands, one can
consider A2 � Aid .
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Proposition 3 (Application of an architecture to independent components) Let B1,B2 be two sets of components,
such that

⋃
B∈B1

PB ∩⋃
B∈B2

PB � ∅. LetA1 � (C1,PA1 , γ1) andA2 � (C2,PA2 , γ2) be two architectures, such that

PA1 ⊆ P1
�� ⋃

B∈B1∪C1 PB and PA2 ⊆ P2
�� ⋃

B∈B1∪B2∪C1∪C2 PB . Then A2
(
A1(B1,B2)

) � A2
(
A1(B1),B2

)
.

Proof. As in the proof of Proposition 2, we notice that the sets of states are equal in both composed components,
thus we only have to prove the equality of transition relations. By Lemma 1, we assume C1 � {C1} and C2 � {C2}.
Furthermore, let B1 � {B1, . . . ,Bk } and B2 � {Bk+1, . . . ,Bn }. We then have P1 � PC1 ∪ ⋃k

i�1 PBi
and P2 �

PC1 ∪ PC2 ∪ ⋃n
i�1 PBi

.
Assume that we have a transition qC1qC2q1 . . . qn

a−→ q ′
C1
q ′
C2
q ′
1 . . . q ′

n in A2
(
A1(B1,B2)

)
. All components can

make their corresponding transitions and a can be represented as a � aC2 ∪ aγ1 ∪ a1, where aC2 ⊆ PC2 , aγ1 ∈ γ1
and a1 ∈ 2P1\PA1 . As PBi

∩ PBj
� ∅, for all i 	� j ∈ [1,n], all the ports of B2 that belong to a are in a1. Let

a1 � aB2 ∪ a2, where aB2 � a ∩⋃n
i�k+1 PBi

. Then either aγ1 ∪ a2 � ∅ or it is enabled inA1(B1). Hence, interaction
a � aC2 ∪ aγ1 ∪ a2 ∪ aB2 is enabled in A2

(
A1(B1),B2

)
.

Assume interaction a is enabled in A2
(
A1(B1),B2

)
. It can be represented as a � aC2 ∪ aγ1 ∪ a2 ∪ aB2 .

Then interaction aγ1 ∪ a2 ∪ aB2 is enabled in A1(B1,B2) and consequently a is enabled in A2
(
A1(B1,B2)

)
in the

corresponding state. �

Intuitively, Proposition 3 states that one only has to apply the architecture A1 to those components that
have ports involved in its interface. Notice that, in order to compare the semantics of two sets of components,
one has to compose them into compound components, by applying some architecture. Hence the need for A2 in
Proposition 3. As a special case, one can consider the “most liberal” identity architectureAid (see Proposition 1).
Aid does not impose any coordination constraints, allowing all possible interactions between the components it
is applied to.

Example 4 (Mutual exclusion (contd.)) Example 3 can be generalized to an arbitrary number n of components
by repeating the architecture application pairwise. However, this solution requires n(n − 1)/2 architectures, and
so does not scale well. Instead, we apply architectures hierarchically.

Let n � 4 and consider two architectures A12, A34, with the respective coordination components C12, C34,
that respectively enforce mutual exclusion between B1,B2 and B3,B4 as in Example 3. Assume furthermore, that
an architecture A enforces mutual exclusion between the taken states of C12 and C34. It is clear that the system
A

(
A12(B1,B2),A34(B3,B4)

)
ensures mutual exclusion between all four components (Bi )4i�1. Furthermore, by the

above propositions,

A
(
A12(B1,B2),A34(B3,B4)

) � A
(
A12

(
B1,B2,A34(B3,B4)

))

� A
(
A12

(
A34(B1,B2,B3,B4)

)) � (A ⊕ A12 ⊕ A34)(B1,B2,B3,B4) .

Example 5 (Fair mutual exclusion) Examples 3 and 4 are not fair: a component can be forever denied access to
its work state. We remedy this by adding requests, and modifying the architecture so that a component that has
requested access is eventually granted access. Figure 3a shows a basic component Bi (with i ranging over some
set of indices IB ) which asks for the critical section (ai ), waits to begin its work (bi ), then finishes its work (fi ).

We use a hierarchical scheme: a binary tree in which basic components Bi are the leaves, and architectures
are the internal nodes. Each architecture receives requests from its left and right children and passes them to its
parent. Likewise an architecture receives grants from its parent and passes them to its children.

The architecture at the root of the tree does not pass requests up and does not need to receive grants from
above. The details of the root architecture are straightforward, and are omitted. Each architecture Ai (with i
ranging over some set of indices IA, such that IA ∩ IB � ∅) has two coordinators:

1. The priority coordinator, C pr
i , shown in Fig. 3b, stores requests from the left (a�

i ) and right (ar
i ) subtrees and

determines priority based on the order of receiving the requests (FIFO). Priority coordinators enforce the
property:
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wait

sleep

work

ai

bi

fi
ai

bi

fi

(a) ComponentBi

bi

bri

ai

ar
i

r

aiar
i

bi briar
iai

bibri

wi

wi wi

wi

wi

(b) Priority CoordinatorCpr
i

fin_dn req_up

gr_dn gr_up

idle

ai

fi

fc
i

bci

bi

ai
bci

bi

fc
i

fi

(c) Access Coordinator Cacc
i

Fig. 3. Hierarchical and fair mutual exclusion (the initial states of the components are shaded)

If the left subtree submits a request to its parent before the right subtree, then the left subtree receives a grant from its parent
before the right subtree does (and vice-versa).

This is achieved by maintaining a queue of length at most 2, which stores pending requests. In Fig. 3b, the
queue is shown labeling each state, with the head of the queue to the left. When there are requests waiting in
the queue, the priority coordinator indicates this by enabling the port wi .

2. The access coordinator, C acc
i , shown in Fig. 3c, sends ask requests to the parent architecture (ai ), keeps track

and passes the begin and finish actions up (bi and fi ) and down (bci and f ci ) the hierarchy tree (the superscript
c stands for “child”). Access coordinators enforce the property:

In total, the left and right subtrees have at most one grant at any time.

This is achieved as follows. The access coordinator proceeds in a cycle: when the corresponding priority
coordinator signals that the request queue is not empty, it sends the request to its parent (ai ) and waits for
the parent to return a grant (bi ). It then relays this grant to its children (bci ), with the priority coordinator
ensuring that the grant goes to the higher-priority child in case both children have outstanding requests. Upon
receiving a done notification from a child (f ci ) the access coordinator relays it to its parent (fi ) and returns to
the initial state.

Thus all architectures in the tree are instances of the same parameterized architecture A(i,j�,jr ) �({C pr
i ,C acc

i },P(i,j�,jr ), γ(i,j�,jr )
)
, where i ∈ IA is the index of the architecture and j�, jr ∈ IA ∪ IB are, respectively,

the indices of its left and right operands. The interface of A(i,j�,jr ) is

P(i,j�,jr ) � {a�
i , a

r
i , b�

i , b
r
i } ∪ {ai , bci , bi , f ci , fi } ∪ {aj� , bj� , fj�} ∪ {ajr , bjr , fjr } ,

it consists of the ports of the two coordinators and the “up” ports of the two children. The interaction model
is

γ(i,j�,jr ) � {
aiwi , bi , fi , a�

i aj� , a
r
i ajr , b

�
i b

c
i bj� , b

r
i b

c
i bjr , f

c
i fj� , f

c
i fjr

}
,

where

• aiwi synchronises the two coordinators, forcing the access coordinator to only send requests to the parent,
when there is at least one request from a child waiting;

• bi and fi are singleton interactions for propagating begin and finish information to the parent architecture;
• a�

i aj� and ar
i ajr correspond, respectively, to asking by the left and right children,

• b�
i b

c
i bj� and bri b

c
i bjr correspond, respectively, to granting the access to the left or right child;

• f ci fj� and f ci fjr correspond, respectively, to the left or right child reporting that it has finished working.

We can apply this architecture to generate any binary tree that is desired.
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Clearly, for any two components Bk and Bl , to which such an architecture A(·,k ,l) can be applied (see Defini-
tion 4), the mutual exclusion holds in A(·,k ,l)(Bk ,Bl ) and the access is granted to Bk and Bl in a fair manner, as
discussed above. For more complex systems, correctness can be shown recursively.

Notice that having two coordinators for each architecture, as opposed to combining them into a single more
complex coordinator, has the following benefits:

• each coordinator is simpler, hence easier to understand, modify and debug,

• each coordinator enforces a single primitive property, hence there is a one-to-one correspondence between
properties and coordinators.

In particular, notice that the behaviour of the access coordinator does not depend on the number of its
children. Hence, to change the structure of the overall architecture, we would only need to modify the behaviour
of the priority coordinator and adapt accordingly the interaction model.

The ability to factor into simple coordinators is a key advantage of our method. In a typical distributed
algorithm (e.g. distributed mutual exclusion) where responsibility for enforcement of properties is distributed
amongst all the components, such factorization is very difficult.

2.4. Partial application of architectures

Notice that the main condition, limiting the application of Propositions 2 and 3, is that the architectures must
be applicable, i.e. every port of the architecture interface must belong to some component. Below we lift this
restriction by introducing the notion of partial application. We generalize Definition 4 for architectures A �
(C,PA, γ ) applied to sets of components B, such that PA 	⊆ ⋃

B∈B∪C PB . This means that the architecture
enforces constraints on some ports which are not present in any of the coordinating or base components. In
other words, the system obtained by applying the architecture to the set of components B is not complete. The
result can then itself be considered as an architecture where the coordinating component is the one obtained by
applying to B ∪ C the projection of interactions in γ .

Definition 7 (Partial application) Let A � (C,PA, γ ) be an architecture and B be a set of components. Let
P � ⋃

B∈B∪C PB . A partial application of A to B is an architecture A[B] �� ({C ′},P ∪ PA, γ �� 2P\PA ), where

C ′ �� (γP �� 2P\PA)(C ∪ B) with γP � {a ∩ P | a ∈ γ } and the operator �� as in Definition 4.

Notice that an architecture obtained by partial application has precisely one coordinating component C ′. It
is also important to notice that the interaction model in A[B] is not the same as in the definition of C ′. On the
other hand, if PA ⊆ P (as in Definition 4), we have γP � γ and A[B] � ({A(B)},P , γ �� 2P\PA

)
.

Lemma 4 Let B be a set of components and A � (C,PA, γ ) be an architecture, such that PA ⊆ ⋃
B∈B∪C PB . Then

A(B) � A[B](∅).
Proof. Follows immediately from Definitions 4 and 7. �

Proposition 4 (Partial application to a subset of components) Let B1 and B2 be two sets of components, such that
B1 ∩ B2 � ∅, and let A � (C,PA, γ ) be an architecture. Then A[B1 ∪ B2] � (

A[B1]
)
[B2].

Proof. Clearly the interfaces of both architectures coincide. Furthermore, since the two architectures are obtained
by partial application, each has only one coordinating component (see Definition 7). Thus we have to show that
the coordinating components and the interaction models of both architectures coincide.

Let P1 � ⋃
B∈C∪B1

PB and P2 � ⋃
B∈C∪B2

PB . By Definition 7, the interaction models of A[B1 ∪ B2] and(
A[B1]

)
[B2] are, respectively γ �� 2(P1∪P2)\PA and

(
γ �� 2P1\PA

) �� 2P2\PA . Since 2P1\PA �� 2P2\PA � 2(P1∪P2)\PA ,
we conclude that the interaction models coincide.
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It is also clear that the state spaces, initial states and interfaces of both coordination components coincide.
Thus, we only have to show that so do the transition relations. Let us consider the coordinating components of
the two architectures. By Definition 7, we have3

A[B1 ∪ B2] � ({C12},PA ∪ P1 ∪ P2, γ �� 2(P1∪P2)\PA
)
,

with C12 � (
γP1∪P2 �� 2(P1∪P2)\PA

)
(C ∪ B1 ∪ B2) ,

where γP1∪P2 � {a ∩ (P1 ∪ P2) | a ∈ γ } . (4)

Similarly,

A[B1] � ({C1},PA ∪ P1, γ �� 2P1\PA
)
,

with C1 � (
γP1 �� 2P1\PA

)
(C ∪ B1) , where γP1 � {a ∩ P1 | a ∈ γ } , (5)

and

(A[B1])[B2] � ({C2},PA ∪ P1 ∪ P2, γ �� 2(P1∪P2)\PA
)
,

with C2 � (
γP1∪P2 �� 2(P1∪P2)\PA

)
({C1} ∪ B2) . (6)

Since the interaction models and the constituent atomic components of C12 and C2 coincide, any transition
allowed in C2 is also allowed in C12. Hence, to prove that C12 � C2, we have to show that any interaction allowed
in C12, after projection, is allowed in C1. Notice, further, that the interface of C1 is P1, whereas those of C2 and
C12 are both P1 ∪ P2.

Consider a ∈ γP1∪P2 �� 2(P1∪P2)\PA . By definition of ��, a � a1∪a2, with a1 ∈ γP1∪P2 and a2 ⊆ (P1∪P2)\PA.
By (4), we have a1 � ã1 ∩ (P1 ∪ P2) with some ã1 ∈ γ . We deduce that a1 ∩ P1 � ã1 ∩ (P1 ∪ P2) ∩ P1 � ã1 ∩ P1
and, therefore a1 ∩P1 ∈ γP1 . Since, a ∩P1 � (a1 ∩P1)∪ (a2 ∩P1) and a2 ∩P1 ⊆ ((P1 ∪P2)\PA)∩P1 � P1\PA,
we have a ∩ P1 ∈ γP1 �� 2P1\PA . Thus, the part of a relevant to the atomic components comprising C1 belongs
to the interaction model in (5). By (1), we conclude that any transition labelled by a in C12 is also a transition of
C2. �

Proposition 4 generalises Proposition 3. In order to generalize Proposition 2, we first define the application
of one architecture to another, by putting

A1[A2]
�� (A1 ⊕ A2)[∅] . (7)

Lemma 5 For any set of components B and any architecturesA1 andA2, we have (A1 ⊕A2)[B] � (A1[B]⊕A2)[∅] �
(A1 ⊕ A2[B])[∅].
Proof. We only prove (A1 ⊕ A2)[B] � (A1[B] ⊕ A2)[∅]. The other equality is symmetrical.

Let Ai � (Ci ,PAi
, γi ), for i � 1, 2, and A1[B] � ({C ′

1},P ′
A1

, γ ′
1). Let P1 � ⋃

B∈B∪C1 PB and P2 �⋃
B∈B∪C1∪C2 PB .
Clearly the interfaces of both architectures coincide. Furthermore, since the two architectures are obtained

by partial application, each has only one coordinating component (see Definition 7). Thus we have to show that
the coordinating components and the interaction models of both architectures coincide.

Let us consider the characteristic predicates of the interactionmodels.Notice, first, that for any two interaction
models γ ′ ⊆ 2P

′
and γ ′′ ⊆ 2P

′′
, over disjoint sets of ports P ′ ∩ P ′′ � ∅, one has (cf. Definition 4)

ϕγ ′ ∧ ϕγ ′′ ≡ ϕγ ′��γ ′′ . (8)

Denote the interaction model of A1[B] by γ ′
1 � γ1 �� 2P1\PA1 . Clearly, ϕ(

2P1\PA1

) ≡ true. Hence, by (8), we

have ϕγ ′
1

≡ ϕγ1 ∧ ϕ(
2P1\PA1

) ≡ ϕγ1 and, consequently, the characteristic predicate of the interaction model of

(A1[B]⊕ A2)[∅] is ϕγ ′
1
∧ ϕγ2 ≡ ϕγ1 ∧ ϕγ2 . By a similar argument, we can conclude that the characteristic predicate

of the interaction model of (A1 ⊕ A2)[B] is also ϕγ1 ∧ ϕγ2 . Since the interfaces of the two architectures coincide,
this implies that so do their interaction models. We denote the interaction model in question by γ12. Recall that
ϕγ12 ≡ ϕγ1 ∧ ϕγ2 .

3 Keep inmind the difference between romanC , denoting a single coordinating component, and calligraphic C, denoting a set of coordinating
components.
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Let us consider the coordinating components of the two architectures. By Definition 7, we have4

(A1 ⊕ A2)[B] � ({C12},P2 ∪ PA1 ∪ PA2 , γ12 �� 2P2\(PA1∪PA2 )
)
,

with C12 � (
γ
P2
12 �� 2P2\(PA1∪PA2 )

)
(C1 ∪ C2 ∪ B) ,

where γ
P2
12 � {a ∩ P2 | a ∈ γ12}. (9)

Similarly,

A1[B] � ({C1},P1 ∪ PA1 , γ1 �� 2P1\PA1
)
,

with C1 � (
γ
P1
1 �� 2P1\PA1

)
(C1 ∪ B) , where γ

P1
1 � {a ∩ P1 | a ∈ γ1}, (10)

and

(A1[B] ⊕ A2)[∅] � ({C2},P2 ∪ PA1 ∪ PA2 , γ12 �� 2P2\(PA1∪PA2 )
)
,

with C2 � (
γ
P2
12 �� 2P2\(PA1∪PA2 )

)
({C1} ∪ C2) . (11)

Notice that the interactionmodels and the constituent atomic components in (9) and (11) coincide. Therefore,
any transition allowed in C2 is also allowed in C12. Hence, to prove that C12 � C2, we have to show that any
interaction allowed inC12, after projection, is allowed inC1. Notice, further, that the interface ofC1 isP1, whereas
those of C2 and C12 are both P2.

Consider a ∈ γ
P2
12 �� 2P2\(PA1∪PA2 ). By definition of ��, a � a1 ∪ a2 with a1 ∈ γ

P2
12 and a2 ⊆ P2\(PA1 ∪PA2 ) ⊆

P1\PA1 . By (9), we have a1 � ã1 ∩ P2 with some ã1 ∈ γ12. Since ϕγ12 ≡ ϕγ1 ∧ ϕγ2 , by Lemma 2, we have
ã1 ∩ PA1 ∈ γ1 and ã1 ∩ P1 ∈ γ

P1
1 . Notice that P1 ⊆ P2. Hence a1 ∩ P1 � ã1 ∩ P2 ∩ P1 � ã1 ∩ P1 ∈ γ

P1
1 . We

conclude that a ∩ P1 � (a1 ∩ P1) ∪ (a2 ∩ P1) � (a1 ∩ P1) ∪ a2 ∈ γ
P1
1 �� 2P1\PA1 . Thus, the part of a relevant

to the atomic components comprising C1 belongs to the interaction model in (10). By (1), we conclude that any
transition labelled by a in C12 is also a transition of C2. �

As a consequence of Lemma 5, we immediately obtain the following generalisation of Proposition 2.

Proposition 5 (Commutativity of the partial application) For any set of components B and any architectures A1
and A2, we have A2

[
A1[B]

] � A1
[
A2[B]

]
.

Proof. By (7) and Lemma 5, we have

A2
[
A1[B]

] � (
A2 ⊕ A1[B]

)
[∅] � (A1 ⊕ A2)[B] � (

A1 ⊕ A2[B]
)
[∅] � A1

[
A2[B]

]
.

�

Notice, furthermore, that (7) generalisesDefinition 7. Indeed, to a given set of componentsB, we can associate
the architecture AB

�� Aid [B] (cf. Proposition 1). By (7) and Lemma 5, we obtain, for any architecture A,

A[AB] � A
[
Aid [B]

] � (A ⊕ Aid [B])[∅] � (A ⊕ Aid )[B] � A[B] .
Thus, partial application of an architecture to a set of components can be considered a special case of the
application of an architecture to another architecture.

The results of the last two subsections provide two ways for using architectures at early design stages, by
partially applying them to other architectures or to components that are already defined. An architecture restricts
the behaviour of its arguments, which can be both components and other architectures.

4 Again, keep in mind the difference between roman C , denoting a single coordinating component, and calligraphic C, denoting a set of
coordinating components.
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3. Property preservation

Throughout this section we use several classical notions, which we recall here.

Definition 8 (Paths, path fragments and reachable states) Let B � (Q, q0,P ,−→) be a component. A finite or
infinite sequence q0

a1−→ q1
a2−→ · · · ak−→ qk · · · is a path fragment in B . If in addition q0 � q0, then it is also a path.

A state q ∈ Q is reachable iff there exists a finite path in B terminating in q . A path fragment is reachable iff its
first state is reachable.

In the sequel, we use subscripts on states (as above) when we are discussing a path fragment, i.e. q0
a1−→ q1

a2−→
· · · ak−→ qk · · · , where q0 is not necessarily the initial state q0. We use superscripts on the states when we are
discussing a path (i.e. starting in the initial state q0), so that a path is written as q0

a1−→ q1
a2−→ · · · ak−→ qk · · · .

In the rest of this section, unless explicitly stated otherwise, we consider a set of architectures A1, . . . ,Am

and a set of operand components B. For a set of indices I ⊆ [1,m], we will denote by
⊕

i∈I Ai the composition
of all architectures with indices in I . This is well-defined, since ⊕ is associative and commutative. In particular,
⊕m

i�1 Ai
�� ⊕

i∈[1,m ] Ai � A1 ⊕ · · · ⊕ Am .
We consider that any property can be decomposed as the conjunction of safety and liveness properties, and

address bothkinds separately in the following two subsections.We show that if twoarchitecturesA1 andA2 enforce
respectively safety properties �1 and �2, the architecture A1 ⊕ A2 enforces �1 ∧ �2, that is both properties are
preserved by architecture composition. Since the application of an architecture restricts the behaviour of its
arguments, liveness properties cannot be preserved in general, because liveness depends on the existence of live
extensions for every finite execution. Thus, we have to make a special provision for liveness, by introducing the
notion of non-interference.

3.1. Safety properties

Definition 9 Let B � (Q, q0,P ,−→) be a component. A safety property (in the rest of this subsection, simply
property) of B is a state predicate � : Q → B. We write q |� � iff �(q) � true. A property � is initial if q0 |� �;
it is reachable iff there exists a possibly empty path q0

a1−→ q1
a2−→ · · · an−→ qn , such that qn |� �.

The main idea of our approach is that an architecture enforces its characteristic property on the set of its
operand components. From this point of view, the set of coordinating components is not relevant, neither are
their states. Thus, to talk about properties enforced by architectures, we consider properties on the unrestricted
composition of the operand components as formalized by the following definition.

Definition 10 (Enforcing properties) Let A � (C,PA, γ ) be an architecture; let B be a set of components and �
be an initial property of their parallel composition Aid (B) (see Proposition 1). We say that A enforces � on B iff,
for every state q � (qb, qc) reachable in A(B), with qb ∈ ∏

B∈B QB and qc ∈ ∏
C∈C QC , we have qb |� �.

According to the above definition, when we say that an architecture enforces some property �, it is implicitly
assumed that � is initial for the coordinated components. Below, we omit mentioning this explicitly.

Example 6 Consider again the mutual exclusion in Example 1. Component A12(B1,B2) is shown in Fig. 4 (we
abbreviate sleep, work, free and taken to s, w, f and t respectively).

Clearly A12 enforces on {B1,B2} the mutual exclusion property �12 � (q1 	� w) ∨ (q2 	� w), where q1 and q2
are state variables of B1 and B2 respectively.

Theorem 1 (Preserving enforced properties) Let B be a set of components; let Ai � (Ci ,PAi
, γi ), for i � 1, 2, be

two architectures enforcing on B the properties �1 and �2 respectively. The composition A1 ⊕ A2 enforces on B the
property �1 ∧ �2.

Proof.Again, byLemma1,we canassume that eachof the twoarchitectureshasonlyone coordinating component,
i.e. Ci � {Ci }, for i � 1, 2. We also denote, for i � 1, 2, Pi � PCi

∪ ⋃
B∈B PB .

The initiality of �1 ∧ �2, is trivial: both �1 and �2 are initial, hence q0 |� �1 ∧ �2.
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Fig. 5. Projections of reachable states of Example 7 components ontoAid (B1,B2,B3) (for ease of reading, we omit the transitions indicated
by dotted blue arrows and additionally label each state with a red number, whereof the main label is the binary representation with s � 0 and
w � 1)

Consider a path q̃01 q̃
0
2 q

0 a1−→ q̃11 q̃
1
2 q

1 a2−→ · · · ak−→ q̃k1 q̃
k
2 q

k in (A1 ⊕ A2)(B), where q0, . . . , qk ∈ ∏
B∈B QB and

q̃0i , . . . , q̃
k
i ∈ QCi

, for i � 1, 2.

By Lemma 3, q̃01 q
0 a1∩P1−−−→ q̃11 q

1 a2∩P1−−−→ · · · ak∩P1−−−→ q̃k1 q
k is a path in A1(B). (If, for some i ∈ [1, k ], ai ∩P1 � ∅,

the corresponding transition can be omitted from the path.) Thus the state q̃k1 q
k is reachable in A1(B). Since A1

enforces �1 on B, this implies that qk |� �1. Symmetrically, qk |� �2, which concludes the proof. �
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Example 7 In the context of Example 3, consider the application of architecturesA12 andA23 to the components
B1, B2 and B3. The former enforces the property �12 � (q1 	� w) ∨ (q2 	� w) (the projections of reachable
states of A12(B1,B2,B3) onto the state-space of the atomic components are shown in Fig. 5a), whereas the latter
enforces �23 � (q2 	� w) ∨ (q3 	� w) (the projections of reachable states of A23(B1,B2,B3) onto the state-
space of the atomic components are shown in Fig. 5b). By Theorem 1, the composition A12 ⊕ A23 enforces
�12 ∧ �23 � (q2 	� w) ∨ (

(q1 	� w) ∧ (q3 	� w)
)
, i.e. mutual exclusion between, on one hand, the work state of

B2 and, on the other hand, the work states of B1 and B3 (see Fig. 5c). Mutual exclusion between the work states
of B1 and B3 is not enforced. Furthermore, it is easy to check that A12 ⊕ A23 ⊕ A13 enforces mutual exclusion
between the work states of B1, B2 and B3 as �12 ∧ �13 ∧ �23 � (

(q1 	� w) ∧ (q2 	� w)
) ∨ (

(q1 	� w) ∧ (q3 	�
w)

) ∨ (
(q1 	� w) ∧ (q3 	� w)

)
.

In [ABB+14b], we provide a similar result, showing that invariants are also preserved by the architecture
composition.

3.2. Liveness properties

As mentioned in the previous subsection, the main idea of our approach is that an architecture enforces its
characteristic propertyon the set of its operandcomponents and that the statesof the coordinating components are
not relevant. Thus, to talk about properties enforced by architectures, we have to abstract away their coordinating
components. To this end, below, we introduce the notion of path projection, which allows us to consider the
states and paths within A(B), limited to the corresponding states and paths of a “subsystem” that is obtained by
removing some of the architectures.

For a state q of
⊕m

i�1 Ai , the projection of q onto
⊕

i∈I Ai , where I ⊆ [1,m], is denoted q � I and obtained
by removing the state components of all Ci with i 	∈ I .

Definition 11 (Path projection, �) Let α � q̃0q0
a1−→ q̃1q1

a2−→ · · · ak−→ q̃kqk · · · be a path in
(⊕m

i�1 Ai

)
(B),

where q0, q1 . . . , qk , . . . ∈ ∏
B∈B QB and q̃0, q̃1, . . . , q̃k , . . . ∈ ∏m

i�1

∏
C∈Ci QC . Also let I ⊆ [1,m] and PI �

(
⋃

B∈B PB )∪ (
⋃

i∈I
⋃

C∈Ci PC ). Then, the projection of α onto the “subsystem”
(⊕

i∈I Ai

)
(B), denoted α � I , is

obtained as follows. Start with the path

r̃ 0q0
a1∩PI−−−→ r̃ 1q1

a2∩PI−−−→ · · · ak∩PI−−−→ r̃kqk · · · ,

where r̃k � q̃k � I for all k ≥ 0. Then, replace all transitions r̃k−1qk−1 ak∩PI−−−→ r̃kqk , such that ak ∩ PI � ∅, by
r̃kqk , i.e. remove transitions with empty labels (notice that, if ak ∩PI � ∅, we necessarily have r̃k−1qk−1 � r̃kqk ).

Proposition 6 (Path projection) Let α be a path in
(⊕m

i�1 Ai

)
(B). Then, for any I ⊆ [1,m], α � I is a path in(⊕

i∈I Ai

)
(B).

Proof. Let α � q̃0q0
a1−→ q̃1q1

a2−→ · · · ak−→ q̃kqk · · · . By Definition 11, α � I � r̃ 0q0
a1∩PI−−−→ r̃ 1q1

a2∩PI−−−→ · · · ak∩PI−−−→
r̃kqk · · · . Consider an arbitrary transition r̃k−1qk−1 ak∩PI−−−→ r̃kqk along α � I . By Lemma 3, r̃k−1qk−1 ak∩PI−−−→
r̃kqk is a transition in

(⊕
i∈I Ai

)
(B). Also, r̃ 0q0 is the initial state of

(⊕
i∈I Ai

)
(B), by Definition 11. Since

r̃k−1qk−1 ak∩PI−−−→ r̃kqk was chosen arbitrarily, we conclude that α � I is a path in
(⊕

i∈I Ai

)
(B). �

Our treatment of liveness properties is based on the idea that each coordinatorC must be “invoked sufficiently
often”, so that the liveness properties inherent inC are imposed on the systemas awhole. So,what does sufficiently
often mean? A reasonable initial idea is to require that each coordinator is executed infinitely often (along an
infinite path). But that turns out to be too strong. For example, a mutual exclusion coordinator should not be
invoked infinitely often if no process that it coordinates requests the critical resource. So, we add “idle states”, so
that it is permitted for a coordinator to remain forever in an idle state. A coordinator not in an idle state must
eventually be executed.
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Hence, we consider an infinite path to be live with respect to a coordinatorC iff eitherC is executed infinitely
often, or is in an idle state continuously from some point onwards. An equivalent formulation is that an infinite
path is live with respect to a coordinator C iff either C is executed infinitely often, or is in an idle state infinitely
often. A live path is one that (1) is live with respect to all coordinators, and (2) executes some component B ∈ B
infinitely often. This latter condition prevents “divergence”, i.e. an infinite path fragment where none of the
operand components B ∈ B is ever executed. An architecture is live with respect to a set of components iff every
finite path can be extended to an infinite live one.

Definition 12 (Architecture with liveness conditions) An architecture with liveness conditions is a tuple A �
(C,PA, γ ), where C is a set of coordinating components with liveness condition, PA is a set of ports such that⋃

C∈C PC ⊆ PA and γ ⊆ 2PA is an interaction model. A coordinating component with liveness condition is
C � (QC , q0C ,Q idle

C ,PC ,−→), where (QC , q0C ,PC ,−→) is a component (Definition 1) and Q idle
C ⊆ QC .

Thus, we augment each coordinator with a liveness condition: a subset Q idle
C of its states QC , which are

considered “idle”, and in which it can remain forever without violating liveness.
We use the following definitions in discussing liveness. A transition q a−→ q ′ executes interaction a. An infinite

path fragment α executes a infinitely often iff α contains an infinite number of transitions that execute a. A
transition q a−→ q ′ executes a coordinator C iff a ∩ PC 	� ∅, where PC is the set of ports of C . An infinite path
fragment α executes C infinitely often iff α contains an infinite number of transitions that execute C . An infinite
path fragment q̃0q0

a1−→ q̃1q1
a2−→ · · · ak−→ q̃kqk · · · visits an idle state of coordinator C infinitely often iff, for

infinitely many k ≥ 0, q̃k � C (the state component of C in q̃k ) is an idle state of C , i.e. q̃k � C ∈ Q idle
C . A state q

enables an interaction a iff q a−→. An infinite path fragment q̃0q0
a1−→ q̃1q1

a2−→ · · · ak−→ q̃kqk · · · enables an interaction
a continuously iff, for all k ≥ 0, q̃kqk enables a. An infinite path fragment α enables interaction a continuously
from some point onwards iff some infinite suffix of α enables a continuously. A state q̃q enables coordinatorC iff q̃q
enables every interaction a that C is ready to execute, i.e. for every a such that q̃ � C a∩PC−−−→, we also have q̃q a−→.
An infinite path fragment α enables C continuously iff every state of α enables C . An infinite path fragment α
enables C continuously from some point onwards iff some infinite suffix of α enables C continuously.

Definition 13 (Live path)LetA � (C,PA, γ ) be anarchitecturewith liveness conditions andB a set of components.
A path α in A(B) is live iff α is infinite, and, for every C ∈ C, whenever C is in a non-idle state, then C must be
subsequently executed. Formally, if α � q̃0q0

a1−→ q̃1q1
a2−→ · · · ak−→ q̃kqk · · · , then, for every C ∈ C:

∀ k ≥ 0,
(
q̃k � C 	∈ Q idle

C ⇒ ∃ j > k : aj ∩ PC 	� ∅)
,

where C � (QC , q0C ,Q idle
C ,PC ,−→), and q̃k � C denotes the local state of C in q̃k .

Equivalent formulations of Definition 13 are:

1. For every C ∈ C,
∀ k ≥ 0, ∃ j > k :

(
aj ∩ PC 	� ∅ ∨ q̃ j � C ∈ Q idle

C

)
.

That is, α executes C infinitely often or α visits an idle state of C infinitely often;

2. For every C ∈ C,
(∀ k ≥ 0, ∃ j > k : aj ∩ PC 	� ∅) ∨ (∃k ≥ 0, qC ∈ Q idle

C : ∀ j > k , q̃ j � C � qC
)
.

That is, either α executes C infinitely often or, after some state along α, C remains forever in some idle state.

The intuition behind this definition is that each liveness condition guarantees that its coordinator executes
“sufficiently often”, i.e. infinitely often unless it remains forever in some idle state. When architectures are com-
posed, we take the union of all the coordinators. Since each coordinator carries its liveness condition with it,
we obtain that each coordinator is also executed sufficiently often in the composed architecture. We also obtain
that architecture composition is as before, i.e. we use Definition 6, with the understanding that we compose two
architectures with liveness conditions. For the rest of this section, we use “architecture” to mean “architecture
with liveness conditions”.
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When we apply an architecture with liveness conditions to a set of components, thereby obtaining a system,
we need the notion of machine closure [AL93]: every finite path can be extended to a live one.

Definition 14 (Live w.r.t. a set of components) Let A be an architecture with liveness conditions and B be a set of
components. A is live w.r.t. B iff every finite path in A(B) can be extended to a live path.

Even ifA1, . . . ,Am are each live w.r.t. B, it is still possible for (A1 ⊕ · · ·⊕Am )(B) to be not live w.r.t. B, due to
“interference” between the coordinators of theAi . For example, consider two architecturesA1 andA2, as follows.
A1 enforces safe and fairmutual exclusion between two components (sayB1 andB2), so that every component that
requests the critical section eventually receives it. A2 enforces a priority queue over n components B1, . . . ,Bn ,
includingB1 andB2, and dynamically determines the queue ordering at run time. IfB1 andB2 repeatedly contend
for the critical section, then it is possible to reach a state where (1) both B1 and B2 are in a wait state, waiting for
the critical section, (2) A1, to ensure fairness of critical section access, has decided to grant access to B1, and (3)
A2, for other reasons, has decided to orderB2 higher thanB1 in the queue. Then, the coordinator(s) ofA1 cannot
execute an interaction, since this would require the involvement of B1, which is prohibited by A2.

This example shows that liveness, unlike safety, is affectedby the interactionof coordinators.Wemust therefore
impose additional conditions sufficient to guarantee that (A1 ⊕ · · · ⊕ Am )(B) is live w.r.t. B. These conditions
are (1) deadlock-freedom, discussed in the next section, and (2) non-interference, which we introduce and define
in Sect. 3.2.2 below. To avoid state-explosion w.r.t. the number of architectures, we define non-interference as a
condition on the interaction of all pairs of architectures, in the context of a given set of components. This also
makes non-interference compositional.

3.2.1. Deadlock-freedom

A system that deadlocks cannot be live, in general, since it has a finite execution which cannot be extended to a
live one. A system is free of global deadlock iff, in every reachable state, there is at least one enabled interaction.
We define, in [ABB+13], a characterization of deadlock in BIP called a supercycle: roughly, a supercycle SC is a

subset of the components such that every interaction a that some Bi ∈ SC enables (i.e. qi
a∩Pi−−−→, where qi is the

current state and Pi is the set of ports of the component Bi ) is blocked by some other component Bj in SC , i.e.

Bj is a participant in a and qj 	 a∩Pj−−−→ . These blocking relations are clearly determined by the current global state.
Let s a−→ t be an arbitrary reachable transition such that there is no supercycle in state s , and there is a

supercycle SC in state t . This transition “created” SC in some sense, and we show that some component Bi that
participates in a must be in SC . This enables us to formulate a local deadlock-freedom condition (denoted LDFC
in [ABB+13]) that implies the impossibility of creating a supercycle, i.e. LDFC is sufficient, but not necessary,
for deadlock-freedom. Furthermore, LDFC can often be evaluated in a “small subsystem”, which contains all
the components that participate in a, and maybe some others. Actually, we start with the subsystem consisting
of just the components that participate in a, and, if the check fails, we add more components (to obtain a better
over-approximation of the reachable states) and try again. For finite-state systems, the check can be automated,
and the running time of the check is linear in the number of reachable states and transitions of the smallest
subsystem in which the check succeeds. For example, for n dining philosophers in a cycle, the check runs in time
linear with the number of philosophers n. See [ABB+13] for details and experimental results.

3.2.2. Non-interference condition for ensuring liveness

Wenowgive a criterion for liveness that canbe evaluatedwithout state-explosionw.r.t. the numberof architectures.
Avoidance of state-explosion is achieved by analyzing the interaction between architectures two at a time, rather
than all at once.

Definition 15 (Non-interference of architectures) Let architectures Ai � (Ci ,PAi
, γi ), for i � 1, 2 be live with

respect to a set of components B. Then A1 is non-interfering with respect to A2 and components B iff, for every
reachable infinite path fragment α in (A1 ⊕ A2)(B), the following hold: (1) for every C2 ∈ C2, either α executes
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C2 infinitely often, or α visits an idle state of C2 infinitely often, or α enables C2 continuously from some point
onwards, and (2) some B ∈ B is executed infinitely often along α. Formally, for all infinite α � q̃0q0

a1−→ q̃1q1
a2−→

· · · ak−→ q̃kqk · · · , we have, for every C2 ∈ C2, the following:
(∀ k ≥ 0, ∃ j > k : aj ∩ PC2 	� ∅) ∨ (∀ k ≥ 0, ∃ j > k : q̃j � C2 ∈ Q idle

C2

)

∨
(

∃k ≥ 0 : ∀ j > k ,∀ a,
(
q̃j � C2

a∩PC2−−−−→⇒ q̃j qj
a−→))

,

and, for some B ∈ B, the following:
(∀ k ≥ 0, ∃ j > k : aj ∩ PB 	� ∅)

.

A set of architectures Ai � (Ci ,PAi
, γi ), for i ∈ [1,m] is pairwise-noninterfering w.r.t. components B, iff for

all j , k ∈ [1,m], j 	� k : Aj is non-interfering w.r.t. Ak and components B.

Definition 16 (Fair paths, fair path fragments) Let B � (Q, q0,P ,−→) be a component and let α be an infinite
path fragment of B . Then, α is a fair path fragment iff, for every interaction a, if α enables a continuously from
some point onwards, then α executes a infinitely often. If α is in addition a path, we say it is a fair path.

That is, we use here weak interaction fairness [FF96].

Theorem 2 (Live architectures using pairwise non-interference)Let architecturesAi � (Ci ,PAi
, γi ), for i ∈ [1,m]

be live w.r.t. a set of components B. Assume that:

(a) for all j , k ∈ [1,m], j 	� k , Aj is non-interfering w.r.t. Ak and components B, according to Definition 15,
and

(b)
(⊕m

i�1 Ai

)
(B) is free of global deadlock.

Then
(⊕m

i�1 Ai

)
is live w.r.t. B.

Proof. Let α f in be an arbitrary finite path in
(⊕m

i�1 Ai

)
(B). By assumption (b), there exists at least one extension

of α f in to an infinite path, which we call α. Furthermore, choose α to be fair. This can always be done, since weak
interaction fairness is feasible [FF96], i.e., in a system free of global deadlock, any finite path can be extended to
an infinite path that satisfies weak interaction fairness.

Since there are a finite number of coordinators and components, α must either execute some coordinator
Ck ∈ Ck (for some k ∈ [1,m]) infinitely often, or it must execute some component B ∈ B infinitely often.
Assume that α does not execute some component B ∈ B infinitely often. Then α executes infinitely often some
coordinator Ck ∈ Ck for some k ∈ [1,m]. Consider arbitrary j ∈ [1,m], k 	� j , and let αjk � α � {j , k}, i.e. αjk is
the projection of α onto (Aj ⊕ Ak )(B), as given by Definition 11. By Proposition 6, αjk is a path in (Aj ⊕ Ak )(B).
Since α executes Ck infinitely often, we have that αjk is infinite, by Definition 11. Hence αjk is an infinite path
in (Aj ⊕ Ak )(B), and so by (a), we can apply Definition 15 to αjk . Hence αjk executes some component B ∈ B
infinitely often. Hence, by Definition 11, α executes B infinitely often. We conclude that the initial assumption is
false, and that α does indeed execute some component B ∈ B infinitely often.

Now consider for arbitrary � ∈ [1,m], an arbitrary C� ∈ C�. Also choose an arbitrary j ∈ [1,m], � 	� j . Let
αj � � α � {j , �}, i.e. αj � is the projection of α onto (Aj ⊕ A�)(B), as given by Definition 11. By Proposition 6,
αj � is a path in (Aj ⊕ A�)(B). Since α executes B infinitely often, it follows by Definition 11 that αj � executes B
infinitely often, and so αj � is infinite. Hence αj � is an infinite path in (Aj ⊕ A�)(B), and so by (a), we can apply
Definition 15 to αj �. Hence, we conclude that, along αj �, C� is either executed infinitely often, or visits an idle
state infinitely often, or is enabled continuously from some point onwards. If C� is executed infinitely often or
visits an idle state infinitely often along αj �, then the same holds along α. Otherwise, C� is enabled continuously
from some point onwards in αj �. Since j was chosen arbitrarily, we conclude that, in this case, C� is enabled
continuously from some point onwards in all αj �, as j ranges over [1,m]− {�}. Hence by Definition 2 (semantics
of interaction models) C� is enabled continuously from some point onwards in α. Hence C� is executed infinitely
often since α is fair. We have thus established that, along α, C� is executed infinitely often or visits an idle state
infinitely often. Therefore, α is live w.r.t. C�. Since C� was chosen arbitrarily, we have that α is live w.r.t. every
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coordinator. We also showed above that α executes some component B ∈ B infinitely often. By Definition 13, we
conclude that α is a live path.

Now α f in was chosen arbitrarily, and so we conclude that every finite path can be extended to a live path. So
by Definition 14,

⊕m
i�1 Ai is live w.r.t. B. �

The above proof also shows that weak fairness can always be used as a scheduling strategy to ensure liveness.

Example 8 (Non-interference in mutual exclusion) Consider the system (A12 ⊕ A23 ⊕ A13)(B1,B2,B3), as in
Example 3. Let each coordinator have a single idle state, namely the free state. Consider the applications of
each pair of architectures, i.e. (A12 ⊕ A23)(B1,B2,B3), (A23 ⊕ A13)(B1,B2,B3) and (A12 ⊕ A13)(B1,B2,B3).
For (A12 ⊕ A23)(B1,B2,B3), we observe that along any infinite path, either C12 executes infinitely often, or
remains forever in its idle state after some point, or is continuously enabled after some point. Hence A23 is non-
interfering w.r.t. A12 and {B1,B2,B3}. Likewise for the five other ordered pairs of coordinators. We verify that
(A12 ⊕ A23 ⊕ A13)(B1,B2,B3) is free from global deadlock using the method of [ABB+13]. Hence by Theorem 2,
we conclude that (A12 ⊕ A23 ⊕ A13) is live w.r.t. {B1,B2,B3}. Hence, it is possible to schedule the system (e.g. by
using weak interaction fairness) so that each coordinator A12, A23 and A13 is executed infinitely often or remains
forever in its free state after some point. This means, in particular, that no process remains in its critical section
forever, which is a usual liveness property of mutual exclusion systems.

Example 9 (Non-interference in hierarchical fair mutual exclusion) Consider now Example 5, fair mutual exclu-
sion. Coordinator Cpr enforces an event-ordering property: if some request and grant events occur, then they
must occur in a certain order. This is a pure safety property, and so we designate all of the states of Cpr as idle.
Coordinator Cacc , on the other hand, enforces a conjunction of safety and liveness properties. In Example 5 we
presented only the safety property, namelymutual exclusion between the left and right subtrees. In addition, there
is a liveness property: if a request is received from a subtree, then this request is eventually granted. Hence we
designate only the initial state of Cacc as idle. Thus, once a request (a) is received, it must eventually be granted
(b). As in the previous example, we verify that non-interference holds. Hence by Theorem 2, we conclude that any
system (binary tree) formed by applying the fair mutual exclusion architecture is live w.r.t. the basic components
Bi , which are the leaves of the tree.

3.2.3. Algorithm to check non-interference in finite-state systems

Wehave implemented an algorithm to check (for finite-state systems) thatAj is non-interfering with respect toAk

and behaviors B. We generate the state-transition diagram of (Aj ⊕ Ak )(B), which is of course a directed graph.
We then remove all transitions of Ck and all states whose Ck -component is an idle state of Ck . We then check
for the existence of a non-trivial strongly connected component of the resulting directed graph (note overloading
of the word “component” here) containing a state in which Ck is not enabled. We consider a strongly connected
component to be nontrivial if it is either a single state with a self-loop, or it contains at least two states. The
existence of such a nontrivial strongly connected component certifies the existence of a reachable infinite path
fragment along which Ck does not execute, is not in an idle state, and is not continuously enabled. Hence non-
interference is violated. We next check for the existence of a cycle in which no operand component B ∈ B is
executed (a single state with a self loop is considered to be a cycle). This again violates non-interference (we use
PB

�� ⋃
B∈B PB in the code for this check). If both checks pass, we return true, otherwise we return false. Figure 6

gives pseudocode for our algorithm.
The two propositions below state the correctness of the checkNonIntrf(·) algorithm, when applied to two

architectures A1, A2 and a set of components B, and give its complexity.

Proposition 7 (Correctness) The algorithm checkNonIntrf(A1,A2,B) returns true iff A1 is non-interfering with
respect to A2 and B, according to Definition 15.

Proof. Call a maximal strongly connected component κ of M ′′ non-trivial iff either κ contains more than one
state, or κ consists of a single state with a self-loop. Proof is by double implication.
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checkNonIntrf(A1, A2,B)
// check that A1 is non-interfering with respect to A2 and B
1. compute the state transition diagram M of (A1 ⊕ A2)(B)
2. forall C2 ∈ C2

3. M ′ := M − {q
a−→ q′ | a ∩ PC2 �= ∅}

4. // that is, M ′ is obtained by removing from M all transitions that execute C2
5. M ′′ := M ′ − {q | q C2 ∈ Qidle

C2
}

6. // that is, M ′′ is obtained by removing from M ′ all states that project onto
7. // an idle state of C2
8. compute the set of maximal strongly connected components of M ′′
9. if there exists a maximal strongly connected component κ of M ′′ such that
10. (κ contains more than one state, or κ consists of a single state with a self-loop), and
11. κ contains a state in which C2 is not enabled
12. then return(false rofdetaloivecnerefretni-non//) C2
13. fi
14. endfor
15. M ′′′ := M − {q

a−→ q′ | a ∩ PB �= ∅} //PB
Δ=

⋃
B∈B PB

16. // that is, M ′′′ is obtained by removing from M all transitions that execute a component B ∈ B
17. if M ′′′ contains a cycle return //non-interference violated for the components B ∈ B
18. return(true nruter//) if A1 does not interfere with A2

(false)
true

Fig. 6. Pseudo-code for checking non-interference according to Definition 15

Suppose first that checkNonIntrf(A1,A2,B) returns true. Then, for every C2 ∈ C2, the following argument
applies. IfM ′′ contains a non-trivial maximal strongly connected component κ, then C2 is enabled in every state
of κ, since otherwise checkNonIntrf(A1,A2,B) would return false. Hence, every cycle inM must either contain a
transition involving C2, or a global state that projects onto an idle state of C2, or must consist entirely of global
states that enableC2. Otherwise this cycle would remain inM ′′ as part of a non-trivialmaximal strongly connected
component that does not enable C2 in every state. Hence, there is no reachable infinite path fragment inM along
which C2 never executes, is never in an idle state, and is not continuously enabled. Hence, along every infinite
path inM , either C2 executes infinitely often, or it is in an idle state infinitely often, or it is enabled continuously
from some point on. Also, for every B ∈ B, the following argument applies. There is no cycle inM ′′′. Hence there
is no cycle in M that never executes a component B ∈ B. Hence there is no reachable infinite path fragment in
M along which no component B ∈ B ever executes. Hence A1 is non-interfering with respect to A2.

Now suppose that A1 is non-interfering with respect to A2. Then, for every C2 ∈ C2, the following argu-
ment must apply. Along every infinite path in M , either C2 executes infinitely often, or it is in an idle state
infinitely often, or it is enabled continuously from some point onwards. Let σ be an arbitrary cycle in M , where
we consider a state with a self-loop to be a cycle. Hence, σ either contains a transition by C2, or it contains
some state that projects onto an idle state of C2, or it consists entirely of states that enable C2. Hence, by con-
struction of checkNonIntrf(A1,A2,B), either σ cannot remain in M ′′ as a cycle (some states/transitions of σ
are deleted), or it remains in M ′′ as a cycle because it consists entirely of states that enable C2. Hence, the
only non-trivial maximal strongly connected components in M ′′ are those in which C2 is enabled in every state.
Hence checkNonIntrf(A1,A2,B) does not return false in line 12. Furthermore, along every infinite path in M ,
some component B ∈ B executes infinitely often. Hence there is no cycle in M which never executes some
B ∈ B. Hence M ′′′ contains no cycles. Hence checkNonIntrf(A1,A2,B) does not return false in line 17. Hence
checkNonIntrf(A1,A2,B) returns true. �

Let M be the state-transition graph of (A1 ⊕ A2)(B), and let | M | denote the number of nodes (states) plus
the number of edges (transitions) inM . Let | (A1 ⊕ A2)(B) | denote the number of interactions (syntactically) in
| (A1 ⊕ A2)(B) |.
Proposition 8 (Complexity) The time complexity of algorithm checkNonIntrf(A1,A2,B) is in O(| C2 | ∗ | M | ∗
| (A1 ⊕ A2)(B) |).
Proof. The outer for-loop is repeated | C2 | times. Line 3 takes time linear in | M | ∗ | (A1 ⊕ A2)(B) |, since
execution of every interactionmust be checked in every transition. Line 5 takes time linear in | M |, since it can be
implemented using a depth-first (or breadth-first) search ofM (we assume that checking that a state is idle can be
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Fig. 8. Coordinating components for the elevator example (the initial states of the components are shaded)

done in constant time, e.g. by encoding the idle attribute into the state’s name). Lines 8 takes time linear in | M |,
using e.g. Tarjan’s algorithm [Tar72]. Lines 9–12 take time linear in | M | ∗ | (A1 ⊕ A2)(B) |, since enablement
of every interaction must be checked in every state. Line 15 takes time linear in | M | ∗ | (A1 ⊕ A2)(B) |, since
execution of every interaction must be checked in every transition. Line 17 takes time linear in | M |, using e.g.
depth-first graph search. Hence the overall time complexity of checkNonIntrf(A1,A2,B) is in O(| C2 | ∗ | M | ∗
| (A1 ⊕ A2)(B) |). �

4. Case study: control of an elevator cabin

We illustrate our results with the case study adapted from the literature [DG08, PR01], which models an elevator
in a buildingwith three floors. Control of the elevator cabin ismodelled as a set of coordinated atomic components
shown in Fig. 7. Each floor of the building has a separate caller system, which allows floor selection inside the
elevator and calling from the floor. Ports ic and f c respectively represent calls made within the elevator and calls
from a floor. Ports is and f s represent cabin stops in response to these calls. Furthermore, in port names, m, c,
o, do, dc, s , dn, up and n f stand respectively for “move”, “close”, “open”, “door open”, “door close”, “stop”,
“move down”, “move up” and “not full”. For the coordinating components of the architectures in the case study,
we will use super-indices to show explicitly which port belongs to which coordinating component, as in s1 for
the port “stop” of coordinator C1 (see Fig. 8a). Caller system components and their ports are indexed by floor
numbers. We denote B � {E ,D,CS0,CS1,CS2} the set of atomic components. To enforce required properties,
we successively apply and compose architectures.

In order to provide the basic functionality of the elevator we apply to B the architecture A1 � ({C1},P1,

γ1
)
. Component C1 is shown in Fig. 8a. P1 contains all ports of C1 and all ports of B. γ1 comprises the empty

interaction ∅ and the following interactions (for i ∈ [0, 2]):

• Door control: o o1, c c1,
• Floor selection control: f ci , ici ,
• Moving control: si s1 f si , si s1 isi , upm1, dnm1.

The system A1(B) provides the basic elevator functionality, i.e. moving up and down, stopping only at the
requested floors and door control. Architecture A1 enforces the safety property: the elevator does not move with
open doors.
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Nonetheless, A1(B) allows the elevator to stop at a floor, and then to leave without having opened the
door. To prevent this, we apply architecture A2 � ({C2},P2, γ2) where C2 is shown in Fig. 8b, P2 �
{e2, d2,m2, c1,m1, s0, s1, s2}, and γ2 � {∅, c1e2, m1m2} ∪ {sid2 | i ∈ [0, 2]}. This grants priority to the door
controller after a “stop” action. By Proposition 2, A2(A1(B)) � (A1 ⊕ A2)(B). (A2 ⊕ A1)(B) provides the same
functionality as A1(B) and also this additional property.

The property “if the elevator is full, it must stop only at floors selected from the cabin and ignore outside
calls” [DG08, PR01], is enforced by applying architecture A3 � ({C3},P3, γ3) with C3 shown in Fig. 8c, P3 �
{add3, sub3, n f 3, do3, dc3, o, c} ∪ {si , f si | i ∈ [0, 2]} and γ3 � {∅, add3, sub3, do3o, dc3c} ∪ {si f si n f

3 |
i ∈ [0, 2]}. An elevator is full in our example if it has two passengers on board, i.e. C3 has reached the bottom
right-most state (see Fig. 8) by twice firing the port add3 without firing the port sub3 in the meantime. By
Proposition 2, A3

(
(A1 ⊕ A2)(B)

) � (A1 ⊕ A2 ⊕ A3)(B). By Theorem 1, (A1 ⊕ A2 ⊕ A3)(B) satisfies all three
properties.

We specify liveness properties for (A1 ⊕ A2 ⊕ A3)(B) by choosing idle states for the coordinators. C1 and C2
have only their initial states idle, since a moving elevator must eventually stop, and an open door must eventually
close. C3 has all of its states idle, since C3 enforces a pure safety property. We implemented our algorithm for
checking non-interference, and used the implementation to verify that A1, A2, and A3 are pairwise mutually
non-interfering w.r.t. B. Also (A1 ⊕ A2 ⊕ A3)(B) is deadlock-free. Hence by Theorem 2, (A1 ⊕ A2 ⊕ A3) is live
w.r.t. B. Furthermore, liveness can be enforced by using weak interaction fairness.

Finally,we consider the additional property: “requests from the secondfloor have priority over all other requests”
[DG08, PR01]. This is enforced by the architecture A4 � ({C4},P4, γ4) with C4 shown in Fig. 8. P4 consists of
all ports of C4 and CS2, and ports o and dn of E , whereas γ4 � {∅, f c2 req

4, ic2 req4, o f r4, dn f r4, f s2 f n4,
is2 f n4}. The system obtained by application ofA4 to (A1⊕A2⊕A3)(B) has a local deadlock, which was detected
by using the deadlock analysis method and tool presented in [ABB+13]. This deadlock occurs when a full elevator
is called from the second floor. Once the second floor is reached, A4 enforces the constraint of not going down,
while A3 forbids stopping at this floor. Thus, the only choice is to move upward, which is impossible. Hence, the
system is in a local deadlock state involving the elevator engine.

The system (A1 ⊕A2 ⊕A4)(B), obtained by applyingA4 to (A1 ⊕A2)(B), is verified to be deadlock-free, using
[ABB+13]. {A1,A2,A4} are pairwise-noninterfering w.r.t. B, using our implementation. Hence, by Theorem 2,
(A1 ⊕ A2 ⊕ A4) is live w.r.t. B, and again, liveness can be enforced by using weak interaction fairness.

5. Related work

Anumber of paradigms for unifying component composition have been studied in [BWH+03, BGK+06, EJL+03].
These achieve unification by reduction to a common low-level semantic model. Coordination mechanisms and
their properties are not studied independently of behaviour. This is also true for the numerous compositional
and algebraic frameworks [Arb04, Fia04, RC03, SG03, BCD00, BLM06, Hoa85, Mil89, LRL10]. Most of these
frameworks are based on a single operator for concurrent composition. This entails poor expressiveness, which
results inoverly complex architectural designs. In contrast,BIPallows expressionof generalmultiparty interaction
and strictly respects separation of concerns. Coordination can be studied as a separate entity that admits a simple
Boolean characterization that is instrumental for expressing composability.

BIP has some similarities with CSP, which can directly express multiparty interaction by using composition
operators parameterized by channel names. For example,B | {a} | B ′ is the system that enforces synchronisation
of a-actions of components B and B ′. Nonetheless, CSP is not adequate for architecture composition as the
components must be modified when additional architecture constraints are applied. Consider for example the
componentsBi � ai → STOP for i � 1, 2, 3. Tomodel the system described in BIP by {a1a2, a2a3}{B1,B2,B3},
two channels α and β must be defined representing respectively interactions a1a2 and a2a3 and the components
modified as follows: B1 � α → STOP , B2 � α → STOP �β → STOP ,B3 � β → STOP . That is, in addition
to renaming, B2 must be modified to show explicitly the conflict between α and β.

Existing research on architecture composability deals mainly with resource composability for particular types
of architectures, e.g. [LRL10]. The feature interaction problem is how to rapidly develop and deploy new features
without disrupting the functionality of existing features. It can be considered as an architecture composability
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problem to the extent that features can be modelled as architectural constraints. A survey on feature interaction
research is provided in [CKMRM03]. Existing results focus mainly on modelling aspects and checking feature
interaction by using algorithmic verification techniques with well-known complexity limitations. Our work takes
a constructive approach. It has some similarities to [HA00] which presents a formal framework for detecting and
avoiding feature interactions by using priorities. Nonetheless, these results do not deal with property preservation
through composition. Similarly, existing work on service interactionmainly focuses onmodelling and verification
aspects, e.g. [DPW06, LJH06].

6. Conclusion

Our workmakes two novel contributions towards correct-by-construction system design. First, it proposes a gen-
eral concept of architecture. Architectures are operators restricting the behaviour of their arguments by enforcing
a characteristic property. They can be composed and studied independently. Composition of architectures can be
naturally expressed as the conjunction of the induced synchronisation constraints. This implies nice properties
such as associativity, commutativity and idempotence. Nonetheless, it is not easy to understand it as an operation
on interactionmodels.UsingBIP to describe architectures proves to be instrumental for achieving this. In contrast
to other formalisms, BIP is expressive enough and keeps a strict separation between behaviour and coordination
aspects. Application of architectures does not require any modification of the atomic components. Furthermore, if
we wish to modify the property enforced by an architecture, then only the coordinators of the architecture need
be modified. The base components, and other architectures, need not be changed. This provides locality and
modifiability, key properties for good software engineering [LG00, chapter 5].

The second contribution is preservation of safety properties enforced by architectures. The preservation of
state predicates is guaranteed by the very nature of architecture composition. This result is different from existing
results stipulating the preservation of invariants of components when composed by using parallel composition
operators, e.g. an invariant of B1 is also an invariant of B1 || B2, for some parallel composition operator ||.
Our result is about preservation of properties over the same state-space, which is the Cartesian product of the
atomic components. That is, a property of A1(B) is also a property of (A1 ⊕ A2)(B), and so the state-space of the
components B is unchanged.

Architecture composition also preserves liveness properties, subject to a requirement of non-interference
amongst the architectures that are applied. We consider liveness properties expressed implicitly by requiring each
coordinator to be executed infinitely often or to remain forever in some idle state after some point. This can be
expressed in linear temporal logic as �� exec(C ) ∨ ∨

idle(s) �� at(s), where �, � are the always and eventually
modalities of linear temporal logic, exec(C ) holds when C has just been executed, idle(s) holds iff s is an idle
state, and at(s) holds iff the current state of C is s . It remains to determine the exact fragment (possibly all) of
linear temporal logic that can be handled by our framework (both safety and liveness). This is a topic for future
work.

Our work pursues similar objectives as the research on interaction of features or services, insofar as they can
be modelled as architectural constraints. Nonetheless, it adopts a radically different approach. It privileges con-
structive techniques to avoid costly and intractable verification. It proposes a concept of composability focusing
on property preservation.

Our work is part of a broader research program investigating correct-by-construction approaches. These are
at the root of any mature engineering discipline. They are scalable and do not suffer limitations of correctness-
by-checking. Our vision is that systems can be built incrementally by composing architectural solutions ensuring
elementary properties, e.g. mutual exclusion, schedulability, fault-tolerance and timeliness. The desired global
properties can be established as the conjunction of elementary properties. To put this vision into practice, we
need to develop a repository of reference architectures with their characteristic properties.

We also need to generalize our approach to liveness: in some cases, we can ensure liveness by checking for the
continuous enablement of interactions, and ensuring their execution by using weak fairness. This would enlarge
the set of systems whose liveness we can enforce.

There exists a plethora of results on solving coordination problems including distributed algorithms, proto-
cols, and scheduling algorithms, hardware architectures. Most of these results focus on principles of solutions
and discard essential operational details. Their formalization as architectures will make explicit the underlying
concrete coordinationmechanisms based on operational semantics. Is it possible to find a taxonomy induced by a
hierarchy of characteristic properties? Moreover, is it possible to determine a minimal set of basic properties and
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corresponding architectural solutions from which more general properties and their corresponding architectures
can be obtained? Bringing answers to these questions would greatly enhance our capability to design systems that
are correct-by-construction and minimal.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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