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ABSTRACT
We provide an algebraic formalisation of connectors in BIP.
These are used to structure interactions in a component-
based system. A connector relates a set of typed ports.
Types are used to describe di�erent modes of synchronisa-
tion: rendezvous and broadcast, in particular.
Connectors on a set of ports P are modelled as terms

of the algebra AC(P ), generated from P by using a binary
fusion operator and a unary typing operator. Typing as-
sociates with terms (ports or connectors) synchronisation
types � trigger or synchron �, which determine modes
of synchronisation. Broadcast interactions are initiated by
triggers. Rendezvous is a maximal interaction of a connector
including only synchrons.
The semantics of AC(P ) associates with a connector the

set of its interactions. It induces on connectors an equiva-
lence relation which is not a congruence as it is not stable for
fusion. We provide a number of properties of AC(P ) used
to symbolically simplify and handle connectors. We provide
examples illustrating applications ofAC(P ), including a gen-
eral component model encompassing synchrony, methods for
incremental model decomposition, and e�cient implementa-
tion by using symbolic techniques.

Categories and Subject Descriptors
C.0 [General]: System architectures; Systems speci�cation
methodology; C.3 [Special-Purpose and Application-

Based Systems]: Real-time and embedded systems

General Terms
Design, Theory

1. INTRODUCTION
A key idea in systems engineering is that complex systems

are built by assembling components (building blocks). Com-
ponents are systems characterised by an abstraction, which
is adequate for composition and re-use. Large components
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are obtained by composing simpler ones. Component-based
design confers many advantages such as reuse of solutions,
modular analysis and validation, recon�gurability, control-
lability etc.
Component-based design relies on the separation between

coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-
tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.
One of the main limitations of the current state-of-the-art

is the lack of a uni�ed paradigm for describing and analysing
the coordination between components. Such a paradigm
would allow system designers and implementers to formu-
late their solutions in terms of tangible, well-founded and
organised concepts instead of using dispersed low-level coor-
dination mechanisms including semaphores, monitors, mes-
sage passing, remote call, protocols etc. A uni�ed paradigm
should allow a comparison and evaluation of otherwise un-
related architectural solutions, as well as derivation of im-
plementations in terms of speci�c coordination mechanisms.
A number of paradigms for unifying interaction in het-

erogeneous systems have been proposed in [1, 2, 3, 12]. In
these works uni�cation is achieved by reduction to a com-
mon low-level semantic model. Interaction mechanisms and
their properties are not studied independently of behaviour.
We propose the algebra of connectors for modelling inter-

action in component-based systems. This algebra considers
connectors as the basic concept for modeling coordination
between components. Di�erent formalisations for connec-
tors in component frameworks have been proposed. In most
of them, connectors are speci�ed in an operational setting,
usually a process algebra. In [21], a connector is de�ned as
a set of processes: there is one process for each role of the
connector, plus one process for the �glue� that describes how
all the roles are bound together. In [7], a process algebra
is used to de�ne an architectural type as a set of compo-
nent/connector instances related by a set of attachments
among their interactions. In [1], Reo is a channel-based
exogenous coordination model for multi-agent systems. It
uses connectors compositionally built out of di�erent types
of channels formalised in data-stream semantics. Our ap-
proach considers connectors as relations between ports with
synchronisation types. It is close to [10, 13], where the no-
tion of �higher-order� connectors is investigated in a cate-
gorical framework for component composition. Nonetheless,
the categorical semantic underpinnings of their work gives a
very di�erent framework.
The algebra of connectors allows the description of coor-
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Figure 1: Graphical representation of rendezvous (a)
and broadcast (b) connectors.

dination between components in terms of structured state-
less connectors involving communication ports. It formalises
mechanisms and concepts that have been implemented in
the Behaviour-Interaction-Priority (BIP) component frame-
work developed at Verimag [4, 20]. BIP distinguishes be-
tween three basic entities: 1) Behaviour, described as ex-
tended automata, including a set of transitions labelled with
communication ports. 2) Interaction, described by struc-
tured connectors relating communication ports. 3) Dynamic
priorities, used to model simple control policies, allowing se-
lection amongst possible interactions. BIP uses a powerful
composition operator parametrised by a set of interactions.
We present an algebraic formalisation of the concept of

connector, introduced in [14, 15] as a set of communica-
tion ports belonging to di�erent components that may be
involved in some interaction. To express di�erent types of
synchronisation, the ports of a connector have a type (at-
tribute) trigger or synchron. Given a connector involving as
set of ports {p1, . . . , pn}, the set of its interactions is de�ned
by the following rule: an interaction is any non empty subset
of {p1, . . . , pn} which contains some port that is a trigger;
otherwise, (if all the ports are synchrons) the only possible
interaction is the maximal one that is, {p1, . . . , pn}.
In Figure 1, we show two connectors modelling respec-

tively rendezvous and broadcast between ports p1, p2, and
p3. For rendezvous, all the involved ports are synchrons
(represented by bullets) and the only possible interaction is
p1p2p3. As usual, we simplify notation by writing p1p2p3

instead of the set {p1, p2, p3}. For broadcast, p1 is a trigger
(represented by a triangle). The possible interactions are
p1, p1p2, p1p3, and p1p2p3. A connector may have several
triggers. For instance, if both p1 and p2 are triggers in the
above connector, then p2 and p2p3 should be added to the
list of possible interactions.
The main contributions of this paper are the following:

• The algebra of connectors extends the notion of con-
nectors to terms built from a set of ports by using a
binary fusion operator and a unary typing operator
(trigger or synchron). Given two connectors involving
sets of ports s1 and s2, it is possible to obtain by fu-
sion a new connector involving the set of ports s1 ∪ s2

(cf. Figure 2(a)). Ports preserve their types except
for the case where some port occurs in both connec-
tors with di�erent types. In this case, the port in the
new connector is a trigger. It is also possible to struc-
ture connectors hierarchically as shown in Figure 2(b),
where terms p1 p2 and p3 p4 are typed and then fused
to obtain a new connector.

• The semantics of the algebra of connectors associates
with a connector (a term) the set of its interactions.
This induces an equivalence on terms. We show that
this equivalence is not a congruence as it is not pre-
served by fusion. This fact has deep consequences on
composability of interaction models investigated in the
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Figure 2: Fusion (a) and structuring (b) of connec-
tors.

paper. We show that for the subset of the terms where
all the connectors have the same type (synchron or
trigger) the semantic equivalence is a congruence.

• The algebra and its laws can be used to represent and
handle symbolically complex interaction patterns. The
number of interactions of a connector can grow expo-
nentially with its size. We provide applications of the
algebra in modelling languages, such as BIP, and show
that the use of symbolic instead of enumerative tech-
niques can drastically enhance e�ciency in execution
and transformation.

The paper is structured as follows. Section 2 provides a
succinct presentation of the basic semantic model for BIP
and in particular, its composition parametrised by interac-
tions. In Section 3, we present the Algebra of Interactions.
It is a simple algebra used to introduce the Algebra of Con-
nectors presented in Section 4. The last section discusses
possible applications of the algebra of connectors to e�cient
design, analysis, and execution of languages with complex
interaction structure, such as BIP.

2. BIP COMPONENT FRAMEWORK
BIP is a component framework for constructing systems

by superposing three layers of modelling: Behaviour, Inter-
action, and Priority. The lower layer consists of a set atomic
components representing transition systems. The second
layer models interactions between components, speci�ed by
connectors. These are relations between ports equipped with
synchronisation types. Priorities are used to enforce schedul-
ing policies applied to interactions of the second layer.
The BIP component framework has been implemented in

a language and a tool-set. The BIP language o�ers prim-
itives and constructs for modelling and composing layered
components. Atomic components are communicating au-
tomata extended with C functions and data. Their transi-
tions are labelled with sets of communication ports. The
BIP language also allows composition of components para-
metrised by sets of interactions as well as application of pri-
orities.
The BIP tool-set includes an editor and a compiler for

generating from BIP programs, C++ code executable on a
dedicated platform (see [4, 8]).
We provide a succinct formalisation of the BIP component

model focusing on the operational semantics of component
interaction and priorities.

De�nition 2.1. For a set of ports P , an interaction is a
non-empty subset a ⊆ P of ports.

De�nition 2.2. A labelled transition system is a triple
B = (Q, P,→), where Q is a set of states, P is a set of
communication ports, and →⊆ Q× 2P ×Q is a set of tran-
sitions, each labelled by an interaction.
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Figure 3: A system with four atomic components

For any pair of states q, q′ ∈ Q and an interaction a ∈ 2P ,
we write q

a→ q′, i� (q, a, q′) ∈→. When the interaction is
irrelevant, we simply write q → q′.
An interaction a is enabled in state q, denoted q

a→, i�
there exists q′ ∈ Q such that q

a→ q′. A port P is active, i�
it belongs to an enabled interaction.

In BIP, a system can be obtained as the composition of
n components, each modelled by a transition system Bi =
(Qi, Pi,→i), for i ∈ [1, n], such that their sets of ports are
pairwise disjoint: for i, j ∈ [1, n] (i 6= j), we have Pi∩Pj = ∅.
We take P =

Sn
i=1 Pi, the set of all ports in the system.

The composition of components {Bi}n
i=1, parametrised by

a set of interactions γ ⊂ 2P is the transition system B =
(Q, P,→γ), where Q =

Nn
i=1 Qi and →γ is the least set of

transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi 6= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn)
a→γ (q′1, . . . , q

′
n)

,

(1)
where qi = q′i for all i ∈ [1, n] such that a∩Pi = ∅. We write
B = γ(B1 . . . , Bn).
An interaction a ∈ γ is enabled in γ(B1, . . . , Bn), only

if, for each i ∈ [1, n], the interaction a ∩ Pi is enabled in
Bi ; the states of components that do not participate in the
interaction remain unchanged.
Several distinct interactions can be enabled at the same

time, thus introducing non-determinism in the product be-
haviour, which can be restricted by means of priorities.

De�nition 2.3. Given a system B = γ(B1, . . . , Bn), a pri-
ority model π is a strict partial order on γ. For a, a′ ∈ γ, we
write a ≺ a′ i� (a, a′) ∈ π, meaning that interaction a has
less priority than interaction a′.

For B = (Q, P,→), and a priority model π, the transition
system π(B) = (Q, P,→π), is de�ned by the rule

q
a→ q′ ∧ 6 ∃ a′ : (a ≺ a′ ∧ q

a′→)

q
a→π q′

. (2)

Notice that an interaction is enabled in π(B) only if it is
enabled in B, and maximal according to π.

Example 2.4 (Sender/Receivers). Figure 3 shows a com-
ponent π γ(S, R1, R2, R3) obtained by composition of four
atomic components: a sender, S, and three receivers, R1,
R2, R3. The sender has a port s for sending messages, and
each receiver has a port ri (i = 1, 2, 3) for receiving them.
The following table speci�es γ for four di�erent coordination
schemes.
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Figure 4: Modulo-8 counter.

Set of interactions

Rendezvous {s r1 r2 r3}
Broadcast {s, s r1, s r2, s r3, s r1 r2, s r1 r3,

s r2 r3, s r1 r2 r3}
Atomic Broadcast {s, s r1 r2 r3}
Causality Chain {s, s r1, s r1 r2, s r1 r2 r3}

Rendezvous means strong synchronisation between S and
all Ri. This is speci�ed by a single interaction involv-
ing all the ports. This interaction can occur only if
all the components are in states enabling transitions
labelled respectively by s, r1, r2, r3.

Broadcast means weak synchronisation, that is a synchro-
nisation involving S and any (possibly empty) subset
of Ri. This is speci�ed by the set of all interactions
containing s. These interactions can occur only if S
is in a state enabling s. Each Ri participates in the
interaction only if it is in a state enabling ri.

Atomic broadcast means that either a message is received
by all Ri, or by none. Two interactions are possible: s,
when at least one of the receiving ports is not enabled,
and the interaction s r1 r2 r3, corresponding to strong
synchronisation.

Causality chain means that for a message to be received
by Ri it has to be received at the same time by all
Rj , for j < i. This coordination scheme is common in
reactive systems.

For rendezvous, the priority model is empty. For all other
coordination schemes, whenever several interactions are pos-
sible, the interaction involving a maximal number of ports
has higher priority, that is we take π = {(a, a′) | a ⊂ a′}.
Throughout the paper, the above rule is applied. In other

words, amongst the enabled interactions, are preferred the
ones involving a maximal number of ports.

Example 2.5 (Modulo-8 counter). Figure 4 shows a model
for the Modulo-8 counter presented in [17], obtained by com-
position of three Modulo-2 counter components. Ports p, r,
and t correspond to inputs, whereas q, s, and u correspond
to outputs. It can be easily veri�ed that the interactions
p q r, p q r s t, and p q r s t u happen, respectively, on every
second, fourth, and eighth occurrence of an input interac-
tion through the port p.

Notice that the composition operator can express usual
parallel composition operators [9], such as the ones used in
CSP [16] and CCS [18]. By enforcing maximal progress,
priorities allow to express broadcast.



3. THE ALGEBRA OF INTERACTIONS
We de�ne the algebra of interactions that will serve as a

basis for building the algebra of connectors.

3.1 Syntax, axioms, and semantics

Syntax. Let P be a set of ports, such that 0, 1 6∈ P . The
syntax of the algebra of interactions, AI(P ), is de�ned by

x ::= 0 | 1 | p ∈ P | x · x | x + x | (x) , (3)

where `+' and `·' are binary operators, respectively called
union and synchronisation. Synchronisation has a higher
order of precedence than union.

Axioms. The operations satisfy the following axioms.

1. Union `+' is idempotent, associative, commutative,
and has an identity element 0, i.e. (AI(P ), +, 0) is a
commutative monoid;

2. Synchronisation `·' is idempotent, associative, and com-
mutative, has an identity element 1, and an absorbing
element 0; synchronisation distributes over union, i.e.
(AI(P ), +, ·, 0, 1) is a commutative semi-ring.

Semantics. The semantics of AI(P ) is given by the func-

tion ‖ · ‖ : AI(P ) → 22P

, de�ned by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
n
{p}

o
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

n
a1 ∪ a2

˛̨̨
a1 ∈ ‖x1‖, a2 ∈ ‖x2‖

o
,

‖(x)‖ = ‖x‖,

(4)

for p ∈ P , x, x1, x2 ∈ AI(P ). Terms of AI(P ) represent
sets of interactions between the ports of P .

Proposition 3.1. The axiomatisation of AI(P ) is sound
and complete, that is, for any x, y ∈ AI(P ),

x = y ⇐⇒ ‖x‖ = ‖y‖ .

Proof. Both the soundness and completeness proofs are
straightforward. The latter is obtained by applying distribu-
tivity to �atten the elements and verifying that the normal
forms, obtained in this way for elements having same sets of
interactions, coincide.

Example 3.2 (Sender/Receiver continued). In AI(P ), the
interaction for the four coordination schemes of Example 2.4
are:

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s (1 + r1) (1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3)

Causality Chain s (1 + r1 (1 + r2 (1 + r3)))
Clearly, this representation is more compact and exhibits

more information: e.g. the expression (1 + ri) suggests that
the port ri is optional.

3.2 Correspondence with boolean functions
AI(P ) can be bijectively mapped to the free boolean alge-

bra B[P ] generated by P . We de�ne a mapping β : AI(P ) →

B[P ] by setting:

β(0) = false , β(1) =
^

p∈P

p ,

β(pi1 . . . pik ) =

k̂

j=1

pij ∧
^

i6=ij

pi ,

β(x + y) = β(x) ∨ β(y) ,

for pi1 , . . . pik ∈ P , and x, y ∈ AI(P ), where in the right-
hand side the elements of P are considered to be boolean
variables. For example, consider the correspondence table
for P = {p, q} shown in Figure 5.
The mapping β is an order isomorphism, and each expres-

sion x ∈ AI(P ) represents exactly the set of interactions
corresponding to boolean valuations of P satisfying β(x).
Although techniques speci�c to boolean algebras can be

applied to the boolean representation of AI(P ) (e.g. BDDs),
AI(P ) provides a more natural representation of interac-
tions for two reasons.

1. Representation in AI(P ) is more intuitive as it gives
directly all the interactions. For example, the term p+
p q of AI(P ) represents the set of interactions {p, p q}
for any set of ports P containing p and q. The boolean
representation of p + p q depends on P : if P = {p, q}
then β(p + pq) = p, whereas if P = {p, q, r, s} then
β(p + pq) = p r s.

2. Synchronisation of two interactions in AI(P ) is by
simple concatenation, whereas for their boolean repre-
sentation there is no simple context-independent com-
position rule, e.g. to obtain the representation of p q
from β(p) = p q r s and β(q) = p q r s.

4. THE ALGEBRA OF CONNECTORS
We provide an algebraic formalisation of the concept of

connector, supported by the BIP language [4]. Connectors
can express complex coordination schemes combining syn-
chronisation by rendezvous and broadcast.

4.1 Syntax, axioms, and semantics

Syntax. Let P be a set of ports, such that 0, 1 6∈ P . The
syntax of the algebra of connectors, AC(P ), is de�ned by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | x + x | (x) ,

(5)

for p ∈ P , and where `+' is binary operator called union,
`·' is a binary operator called fusion, and brackets `[·]' and
`[·]′' are unary typing operators. Fusion has a higher order
of precedence than union.
Union has the same meaning as union in AI(P ). Fu-

sion is a generalisation of the synchronisation in AI(P ).
Typing is used to form typed connectors: `[·]′' de�nes trig-
gers (which can initiate an interaction), and `[·]' de�nes syn-
chrons (which need synchronisation with other ports in order
to interact).

De�nition 4.1. A term x ∈ AC(P ) is a monomial, i� it
does not involve union operators.
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Figure 5: Correspondence between AI({p, q}) and boolean functions with two variables.

Notation 4.2. We write [x]α, for α ∈ {0, 1}, to denote a
typed connector. When α = 0, the connector is a synchron,
otherwise it is a trigger. When the exact type is irrelevant,
we write `[·]∗'.
In order to simplify notation, we will omit brackets on 0,

1, and ports p ∈ P , as well as `·' for the fusion operation.

De�nition 4.3. The degree of a term x ∈ AC(P ) of the
form

Q
i∈I [xi]

∗, denoted by #x, is the number of its trigger
sub-terms.

The algebraic structure on AC(P ) inherits most of the
axioms from AI(P ) except for the associativity of fusion.

Axioms. The operations satisfy the following axioms.

1. Union `+' is associative, commutative, idempotent,
and has the identity element [0].

2. Fusion `·' is associative, commutative, distributive, and
has an identity element [1]. It is idempotent on mono-
mial connectors, i.e. for any monomial x ∈ AC(P ) we
have x · x = x.

3. Typing `[·]∗' satis�es the following axioms, for x, y, z ∈
AC(P ) and α, β ∈ {0, 1}:

(a) [0]′ = [0],

(b)
h
[x]α

iβ

= [x]β ,

(c) [x + y]α = [y]α + [x]α,

(d) [x]′ [y]′ = [x]′ [y] + [x] [y]′.

Lemma 4.4. For xi ∈ AC(P ), where i = 1, . . . , n,

nY
i=1

[xi]
′ =

nX
i=1

0@[xi]
′

nY
i6=j

[xj ]

1A .

Notice that, by application of the above lemma, it is pos-
sible to reduce the degree of the terms to one. For example,
consider a connector between two independent senders and
three receivers s′1 s′2 [r1 + r2 r3]. This connector is equal to
s′1 s2 [r1 + r2 r3] + s1 s′2 [r1 + r2 r3].

Semantics. The semantics of AC(P ) is given by the func-
tion | · | : AC(P ) → AI(P ), de�ned by the rules

|[p]| = p , (6)

|x1 + x2| = |x1|+ |x2| , (7)˛̨̨ nY
i=1

[xi]
˛̨̨

=

nY
i=1

|xk| , (8)

˛̨̨ nY
i=1

[xi]
′ ·

mY
j=1

[yj ]
˛̨̨

=

nX
i=1

|xi| ·

0@Y
k 6=i

“
1 + |xk|

”
·

·
mY

j=1

“
1 + |yj |

”!
, (9)

for x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ) and p ∈ P ∪ {0, 1}.
Rules (8) and (9) are applied to the maximal fusion terms.

Notice that, through the semantics of AI(P ), connectors
represent sets of interactions.
Rule (9) can be decomposed in two steps: 1) the appli-

cation of Lemma 4.4, to reduce the degree of all terms to
one; 2) the application of rule (9) for n = 1, expressing the
fact that the single trigger in each term must participate
in all interactions, while synchrons are optional. Compare
Example 4.8 in the following section with Examples 2.4 and
3.2.

Example 4.5. Consider a system consisting of two Senders
with ports s1, s2, and three Receivers with ports r1, r2, r3.
The meaning of the connector s′1 s′2 [r1 + r2 r3] is computed
as follows.

|s′1 s′2 [r1 + r2 r3]| =

(9)
= |s1| (1 + |s2|) (1 + |r1 + r2 r3|)

+|s2| (1 + |s1|) (1 + |r1 + r2 r3|)
(7)
= |s1| (1 + |s2|) (1 + |r1|+ |r2 r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2 r3|)
(8)
= |s1| (1 + |s2|) (1 + |r1|+ |r2| |r3|)

+|s2| (1 + |s1|) (1 + |r1|+ |r2| |r3|)
(6)
= s1 (1 + s2) (1 + r1 + r2 r3)

+s2 (1 + s1) (1 + r1 + r2 r3) ,

which corresponds to exactly the set of all possible inter-
actions containing at least one of s1 and s2, and possibly
either r1 or both r2 and r3.

Proposition 4.6. The axioms of AC(P ) are sound with
respect to the semantics de�ned by (6)�(9), that is, for x, y ∈
AC(P ), x = y implies |x| = |y|.
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Figure 6: Graphic representation of connectors.

Proof. As rules (8) and (9) are applied to maximal fu-
sion terms, to prove this proposition, we have to verify that
all the axioms preserve the semantics in any fusion context,
i.e. for an axiom x = y and arbitrary z ∈ AC(P ), we have
to verify that |x z| = |y z|. However, it is clear that it is
su�cient to verify this property only for monomial z, which
is straightforward.

De�nition 4.7. Two connectors x, y ∈ AC(P ) are equiva-
lent (denoted x ' y), i� they have the same sets of interac-
tions, i.e.

x ' y
def⇐⇒ |x| = |y| . (10)

In Section 4.3, we show that this equivalence relation is
not a congruence.

4.2 Examples
Example 4.8 (Sender/Receiver continued). In AC(P ), the
interactions for the four coordination schemes of Example 2.4
are:

Set of interactions

Rendezvous s r1 r2 r3

Broadcast s′ r1 r2, r3

Atomic Broadcast s′ [r1 r2 r3]

Causality Chain s′ [r′1 [r′2 r3]]

Notice that AC(P ) allows compact representation of in-
teractions, and, moreover, explicitly captures the di�erence
between broadcast and rendezvous. The four connectors are
shown in Figure 6. The typing operator induces a hierarchi-
cal structure. Connectors can be represented as sets of trees,
having ports at their leaves. We use triangles and circles to
represent types: triggers and synchrons, respectively.

The following example illustrates the distinction between
parentheses `(·)' and the typing operator `[·]∗'.

Example 4.9. Consider two terms p′ (a′ c+b) and p′ [a′ c+b]
of AC(P ). For the �rst term we have

|p′ (a′ c + b)| = |p′ a′ c + p′ b| =

= p (1 + a) (1 + c) + a (1 + p) (1 + c) + p (1 + b)

= p + p a + p c + p a c + a + a c + p b ,

whereas for p′ [a′ c + b] we have

|p′ [a′ c + b]| = |p| (1 + |a′ c + b|)
= p (1 + a + a c + b) = p + p a + p a c + p b .

��AA
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e
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Figure 7: Two connectors realising a broadcast.
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Figure 8: Modulo-8 counter.

Example 4.10 (Broadcast). For the broadcast connector
s′ r1 r2 r3 (Figure 6(b)), we have

|s′ r1 r2 r3| = s (1 + r1) (1 + r2) (1 + r3) .

This connector can be constructed incrementally. For
example, one can start from the connector s′ r1, having
|s′ r1| = s (1 + r1). By typing this connector as a trig-
ger and adding the synchron r2, we obtain

|[s′ r1]
′ r2| = |s′ r1| (1 + |r2|) = s (1 + r1) (1 + r2) .

Connecting r3 in a similar manner gives [[s′ r1]
′ r2]

′ r3 (Fig-
ure 7(a)). The two connectors are equivalent:

|[[s′ r1]
′ r2]

′ r3| = s (1 + r1) (1 + r2) (1 + r3)

It is easy to verify that another incremental construc-
tion results in the equivalent connector [s′ r1]

′ [r′2 r′3] (Fig-
ure 7(c)).

Example 4.11 (Modulo-8 counter). In the model shown
in Figure 8, the causality chain pattern (cf. Figure 6(d)) is
applied to connectors p, q r, s t, and u. Thus interactions are

modelled by a single structured connector p′
h
[q r]′ [[s t]′ u]

i
:˛̨̨

p′
h
[q r]′

h
[s t]′ u

ii˛̨̨
= p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter
of Figure 4.

Example 4.12 (Ethernet). Consider n components, each
equipped with a send port, si, and a receive port ri, for
i ∈ [1, n]. We model two types of interactions:

• successful communication, where some component k
sends data through the port sk, and all the others lis-
ten on their respective receive ports ri for i 6= k;

• collision, where several components try to send data on
their respective send ports {si}i∈I for some I ⊆ [1, n],
while the others listen on {ri}i6∈I .

Thus, the connector modelling the possible interactions is

nX
i=1

s′k
Y
i6=k

(s′i + ri) .



4.3 Congruence relation on AC(P )

De�nition 4.13. We denote by `∼=' the largest congruence
relation contained in `'', that is the largest relation satisfy-
ing, for x, y ∈ AC(P ), and z 6∈ P ,

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) ' E(y/z) , (11)

where e.g. E(x/z) denotes the expression, obtained from E
by replacing all occurrences of z by x.

Notice that, in general, two equivalent terms are not con-
gruent. For example, p′ ' p, but p′ 6∼= p as p′ q 6' p q, for
p, q ∈ P .

Proposition 4.14. Similarly typed equivalent terms are con-
gruent, i.e. for x, y ∈ AC(P ), and α ∈ {0, 1}, we have

x ' y =⇒ [x]α ∼= [y]α . (12)

Note 4.15. Clearly, the converse implication in (12) is also
true.

Lemma 4.16. For x, y ∈ AC(P ),

x ∼= y ⇐⇒ ∀z ∈ AC(P ), (z is monomial⇒ x · z ' y · z) .

Theorem 4.17. For two non-zero monomial connectors
x, y ∈ AC(P ), we have

x ∼= y ⇐⇒

8><>:
x ' y

x · 1′ ' y · 1′

#x > 0 ⇔ #y > 0 .

(13)

The following two corollaries are used for the axiomatisa-
tion of the algebra of triggers, de�ned in the next section.

Corollary 4.18. For x ∈ AC(P ) such that #x > 0, we
have x · 0′ ∼= x.

Corollary 4.19. For x, y ∈ AC(P ), [x]′ [y]′ ∼= [[x]′ [y]′]′.

4.4 Sub-algebras
The subsets of the terms of AC(P ), involving only trig-

gers or synchrons, de�ne two sub-algebras: the algebra of
triggers, AT (P ), and the algebra of synchrons, AS(P ). The
terms of these algebras model, respectively, coordination by
rendezvous and by broadcast.
It can be shown [9] that, for AS(P ), fusion of typed con-

nectors is also associative, that is for x, y, z ∈ AS(P )h
[x] [y]

i
[z] = [x] [y] [z] = [x]

h
[y] [z]

i
.

It follows that dropping the brackets immediately provides
an isomorphism between AS(P ) and AI(P ).
Corollary 4.19 shows that fusion of typed connectors is

equally associative in AT (P ), that is for x, y, z ∈ AT (P )h
[x]′ [y]′

i′
[z]′ = [x]′ [y]′ [z]′ = [x]′

h
[y]′ [z]′

i′
.

Notice that [1] 6∈ AT (P ). The identity element for fusion
in AT (P ) is [0]′ (cf. Corollary 4.18).

Proposition 4.20.

1. The axiomatisation of AS(P ) is sound and complete.

2. The axiomatisation of AT (P ) is sound. It becomes
complete with the additional axiom

[x]′ y = [x]′ y + [x]′ . (14)

Proof. 1. This a�rmation follows from the associativity
of synchronisation inAI(P ) and the rule (8) in the de�nition
of the semantics of AC(P ).
2. The soundness of the axiomatisation of AT (P ) follows

from Corollary 4.18 and Corollary 4.19, the idempotence
of union and synchronisation in AI(P ), and the rule (9).
The completness is proven by showing that the associativity
of fusion and the absorbtion axiom (14) allow to de�ne a
normal form, coinciding for equivalent terms.

5. APPLICATIONS
The algebra of connectors formalises the concept of struc-

tured connector already used in the BIP language. It �nds
multiple applications in improving both the language and its
execution engine. The three applications presented in this
section show its expressive power and analysis capabilities.

5.1 Efficient execution of BIP
The proposed algebraic framework can be used to en-

hance performance of the BIP execution Engine. The En-
gine drives the execution of (the C++ code generated from)
a BIP program. A key performance issue is the computation
of the set of the possible interactions of the BIP program
from a given state. The Engine has access to the set of the
connectors and the priority model of the program. From a
given global state, each atomic component of the BIP pro-
gram, waits for an interaction through a set of active ports
(ports labelling enabled transitions) communicated to the
Engine. The Engine computes from the connectors of the
BIP program and the set of all the active ports, the set of
the maximal interactions (involving active ports). It chooses
one of them, computes associated data transformations and
noti�es the components involved in the chosen interaction.
Currently, the computation of the maximal set of interac-

tions involves a costly exploration of enumerative represen-
tations for connectors. This leads to a considerable overhead
in execution times. For instance, for an MPEG4 encoder in
BIP obtained by componentisation of a monolithic C pro-
gram of 11,000 lines of code, we measured almost 100% of
overhead in execution time. We provide below the principle
of a not yet implemented, symbolic method which could be
used to drastically reduce this overhead.
Given a set a of active ports, we use the following algo-

rithm to �nd the maximal interactions contained in a and a
connector K.

1. Let {p1, . . . , pk} be the set of ports that do not belong
to a. Compute K(0/p1, . . . , 0/pk) (substitute 0 for all
pi, with i = 1, . . . , k).

2. In the resulting connector, erase all primes to obtain

a term eK ∈ AI(P ).

3. Consider eK as a star-free regular expression and build
the associated (acyclic) automaton with states labelled
by interactions contained in a.

4. The �nal states of the obtained automaton correspond
to maximal enabled interactions within K.

Example 5.1. Suppose that only ports q, r, s, and t are ac-
tive, and compute the maximal interactions of the connector
p′ [q [s + r] + r q′]′[t + u].
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Figure 9: Modelling a joint call of two functions.

Substitute 0 for p and u to obtain

0′
h
q [s + r] + r q′

i′
[t + 0] =

h
q [s + r] + r q′

i′
t ,

which becomes
h
q [s + r] + r q

i
t by erasing the primes. The

associated automaton is:

i�
�*

H
Hj

iqir @
@R-

-

q r

q s

-

-

q r t

q s t

The �nal states of this automaton correspond to two in-
teractions, q r t and q s t, and it can be easily veri�ed that
these are, indeed, the two maximal interactions in the given
connector, when ports p and u are not active.

5.2 d-Synchronous component model
Modelling heterogeneous models in BIP, and in particu-

lar synchronous models, has shown that some coordination
schemes need a number of connectors increasing exponen-
tially with the number of ports. Nonetheless, these connec-
tors can be obtained by combination of a reasonably small
number of basic connectors.
To avoid tedious and error prone enumerative speci�ca-

tion, we propose an extension of the current component
model where a transition of the product component may
involve synchronous execution of interactions from several
connectors. This leads to a d-synchronous extension of the
BIP component model discussed below.
To motivate the proposed extension, we model joint func-

tion call inspired from constructs found in languages such
as nesC and Polyphonic C# [11, 19]. A function call for
a function fi, involves two strong synchronisations between
the Caller and the Calleei: 1) through the connector Ki =
ci bi to begin the execution of fi; 2) through the connector
Li = ri fi for �nish and return (see Figure 9 for an example
with two Callees).
Joint function calls involve the parallel computation of

several functions. The Caller awaits for all the invoked func-
tions to complete their execution. For instance, modelling a
joint function call for functions f1 and f2, entails a modi�-
cation of existing connectors by adding the links in dashed
lines, shown in Figure 9, to obtain

[b1 c1]
′ [b2 c2]

′ ' b1 c1 + b2 c2 + b1 c1 b2 c2 .

Depending on the number of ports involved in the call, an
exponential number of connectors can be required. To avoid
connector explosion, we extend the composition operator of
BIP in the following manner.

De�nition 5.2. An interconnected system is given by a
pair ({Bi}n

i=1, {Kj}m
j=1), where Bi = (Qi, Pi,→i) with→i⊆

Qi × 2Pi × Qi, are components, and Kj ∈ AC(P ) with
P =

Sn
i=1 Pi.

ii?p + p q

p

q

e
e ii?r + r s

s

r

e
e

Figure 10: Causality loop.

For an integer parameter d ∈ [1, m], the d-synchronous se-
mantics of ({Bi}n

i=1, {Kj}m
j=1) is the system γd(B1, . . . , Bn)

de�ned by applying the rule (1) with γ = γd, where

γd =
X

I⊆[1,m]
|I|=d

Y
i∈I

[Ki]
′ .

Synchronous semantics corresponds to the case, where d is
maximal (i.e. d = m).

Notice that γd contains all the interactions obtained by
synchronisation of at most d connectors. Thus, in particular,
we have γ1 ⊆ γ2 ⊆ · · · ⊆ γm.
The application of rule (1) for the d-synchronous seman-

tics with d > 1, requires the nontrivial computation of all
the possible interactions. For this the following proposition
can be used.

Proposition 5.3. Let ({Bi}n
i=1, {Kj}m

j=1) be an intercon-
nected system. The set of possible interactions for its d-
synchronous semantics is

nY
i=1

[Gi]
′ ∩ γd , (15)

where, for i ∈ [1, n], we put Gi =
P

qi∈Qi
Gqi with Gqi =P

qi
a→ a.

Notice that Gi, in (15), is the set of all interactions of-
fered by the component i alone. Thus,

Qn
i=1[Gi]

′ is the set
of all the interactions o�ered by the components, whereas γd

is the set of the interactions allowed by the d-synchronised
connectors. Therefore, the intersection of the two sets char-
acterises all the possible interactions for the d-synchronous
semantics.

Example 5.4 (Causality loop). Consider the interconnect-
ed system shown in Figure 10. For d = 2 (synchronous
semantics), the only possible interaction is

[p′ q]′ [r′ s]′ ∩ [q r]′ [p s]′ = p q r s ,

which corresponds to a causality loop, in the terminology of
synchronous languages [6].
Notice that, for d = 1, the set of possible interactions is

empty:

[p′ q]′ [r′ s]′ ∩
“
q r + p s

”
= ∅ .

Example 5.5 (Modulo-8 counter). For synchronous seman-
tics the system in Figure 11 is equivalent to the Modulo-8
counter given in Example 4.11 of Section 4.2. The syn-
chronous model is a more natural representation of this sys-
tem. Its interactions can be computed by application of
Proposition 5.3:

[p + p q]′ [r + r s]′ [t + t u]′ ∩ p′ [q r]′ [s t]′ u′ =

= p + p q r + p q r s t + p q r s t u .
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Figure 11: Synchronous modulo-8 counter.

��AA
e e e e e

p q r s t u
��AA

e
��AA

e

Figure 12: Synthesised connector for mod-8 counter.

As shown in the above examples, it is important to com-
pute e�ciently the interactions of a system for d-synchronous
semantics with d > 1. To avoid costly enumeration, we have
developed an alternative technique, based on dependency
graph analysis. We illustrate this technique below, by ap-
plying it to the Modulo-8 counter.
The dependency graph analysis consists in building a di-

rected acyclic graph, based on relations induced by connec-
tors between the components of an interconnected system
and labels of the transitions of these components. The re-
sulting graph allows to determine the set of the possible
interactions in the synchronous semantics, without having
to enumerate them explicitly.
For the Modulo-8 counter, the interconnected system in

Figure 11 provides the following relations: p → q (p can
trigger q, i.e. p is a necessary condition for q), r → s, and
t → u; on the other hand, q and r must synchronise, as well
as s and t. All these relations together, are represented by
the graph

p → q r → s t → u . (16)

Each path in such dependency graph represents a causal-
ity chain. The graph shown in (16) represents the connector
p′ [[q r]′ [[s t]′ u]], shown in Figure 12 (cf. also Figure 8). In
general, this technique allows the synthesis of the connectors
of a 1-synchronous model equivalent to a given synchronous
model.

5.3 Incremental decomposition of connectors
In [15, 20], it has been argued that incrementality, which

means that models can be constructed by adding and re-
moving components in such a way that the resulting system
is not a�ected by the order of operations, is an important
property of the system composition.
For instance, the following incremental construction for

the broadcast connector s′r1r2r3 is given in Example 4.10.

s′ r1 r2 r3 ' [s′ r1 r2]
′ r3 '

h
[s′ r1]

′ r2

i′
r3 .

We studied techniques for computing incremental decom-
positions for connectors. These techniques are based on the
iterative application of decompositions as de�ned by the fol-
lowing problem.

Problem 5.6 (Decomposition of Connectors). Given a con-
nector K ∈ AC(P ) and a subset of ports P0 ⊂ P , con-

struct two families Ki ∈ AC(P0) and eKi ∈ AC(P \ P0), for

i = 1, . . . , n, such that

K '
nX

i=1

Ki · eKi .

Clearly, it is possible to solve this problem by computing
explicitly all the interactions of K, and, for each interac-
tion, separating the ports of P0. This involves exhaustive
enumeration of possible interactions, and thus leads to a
combinatorial explosion of terms. We have developed two
techniques for decomposing connectors, avoiding this explo-
sion.
Both techniques, involve an iterative application of de-

compositions. The �rst technique [9] is based on term rewrit-
ing rules, whereas the second technique, presented below,
uses the notion of derivation.

Theorem 5.7. For p ∈ P and K ∈ AC(P ) there exists a
unique, up to equivalence, derivative dK/dp ∈ AC(P \ {p})
such that

K ' p ·
»

dK

dp

–
+ K(0/p) . (17)

Derivatives can be computed by applying the axioms of
AC(P ) and the following rules.

Proposition 5.8. For K ∈ AC(P ) and α, β ∈ {0, 1},

1. K(1) ' dK

dp
+ K(0),

2. K ∈ AI(P\{p}) ⇒ d(p K)

dp
' K and

d(p′ K)

dp
' 1′ K ,

3.
d

dp

“
K1 + K2

”
' dK1

dp
+

dK2

dp
,

4.
d

dp

“
[K1]

α[K2]
β

”
'

»
dK1

dp

–α

[K2(1)] + [K1(1)]

»
dK2

dp

–β

.

Example 5.9. Consider the connector K =
h
[s′ r1]

′ r2

i′
r3

modelling a broadcast. Let us decompose it with respect to
s. We have

dK

ds
'

h
[1′ r1]

′ r2

i′
r3 and K(0) ' 0 . (18)

Substituting (18) into (17), and applying the equivalence
x [1′ y] ' [x]′ y, we obtain

K ' s
hh

[1′r1]
′r2

i′
r3

i
' s

hh
r′2r1 + 1′r1

i′
r3

i
' s

h
[r′2r1]

′r3 + r′3r1 + 1′r1

i
' s

h
[r′2r1]

′r3 + r′3r1

i
+ s′r1.

6. CONCLUSION
AC(P ) provides an abstract and powerful framework for

modelling control �ow between components. It allows the
structured combination of two basic synchronisation proto-
cols: rendezvous and broadcast. It is powerful enough to
represent any kind of coordination by interaction, avoiding
combinatorial explosion inherent to broadcast.



Connectors are constructed by using two operators having
a very intuitive interpretation. Triggers initiate asymmetric
interactions; they are sources of causal interaction chains.
Synchrons are passive ports which either can be activated
by triggers or can be involved in some maximal symmet-
ric interaction. Fusion allows the construction of new con-
nectors by assembling typed connectors. Typing induces a
hierarchical structuring, naturally represented by trees.
The concept of structured connectors is directly supported

by the BIP language where connectors describe a set of in-
teractions as well as associated data transformations. Its in-
terest has been demonstrated in many case studies including
an autonomous planetary robot, wireless sensor networks [5],
and adaptive data-�ow multimedia systems. The BIP lan-
guage is used in the framework of industrial projects, as a se-
mantic model for the HRC component model (IST/SPEEDS
integrated project), and for AADL (ITEA/SPICES project).
We believe that AC(P ) provides an elegant mathematical

framework to deal with interactions. The comparison with
boolean algebra shows its interest: fusion becomes a context-
sensitive and rather complicated operation on boolean func-
tions. Boolean algebra representation allows the use of ex-
isting powerful decision techniques, e.g. to decide that an
interaction belongs to a connector or equivalence between
connectors. The relations between AC(P ) and boolean al-
gebra should be further investigated.
Due to space limitations, we could not provide detailed

results about applications of AC(P ). The notation has been
instrumental for formalising the semantics of the synchro-
nous component model. Axiomatisation and properties of
derivatives in AC(P ) allow an e�cient incremental decom-
position of connectors avoiding enumeration of interactions.
Finally, algebraic representation is a basis for symbolic ma-
nipulation and transformation of connectors which is essen-
tial for e�cient implementation of the BIP framework.
To our knowledge, AC(P ) is the �rst algebraic framework

for modelling interaction independently from computation.
It can be a semantic model for formalisms used for modelling
architecture, and provides a basis for comparing coordina-
tion mechanisms supported by existing languages, such as
coordination languages.
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