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ABSTRACT
Although distributed systems are widely used nowadays, their
implementation and deployment is still a time-consuming,
error-prone, and hardly predictive task. In this paper, we
propose a methodology for producing automatically efficient
and correct-by-construction distributed implementations by
starting from a high-level model of the application software
in BIP. BIP (Behavior, Interaction, Priority) is a component-
based framework with formal semantics that rely on multi-
party interactions for synchronizing components and dynamic
priorities for scheduling between interactions.

Our methodology transforms arbitrary BIP models into
Send/Receive BIP models, directly implementable on
distributed execution platforms. The transformation con-
sists of (1) breaking atomicity of actions in atomic compo-
nents by replacing strong synchronizations with asynchronous
Send/Receive interactions; (2) inserting several distributed
controllers that coordinate execution of interactions accord-
ing to a user-defined partition, and (3) augmenting the model
with a distributed algorithm for handling conflicts between
controllers. The obtained Send/Receive BIP models are proven
observationally equivalent to the initial models. Hence, all
the functional properties are preserved by construction in the
implementation. Moreover, Send/Receive BIP models can
be used to automatically derive distributed implementations.
Currently, it is possible to generate stand-alone C++ imple-
mentations using either TCP sockets for conventional commu-
nication, or MPI implementation, for deployment on multi-
core platforms. This method is fully implemented. We re-
port concrete results obtained under different scenarios (i.e.,
partitioning of the interactions and choice of algorithm for
distributed conflict resolution).

Keywords
Component-based modeling, Automated transformation, Dis-
tributed systems, BIP, Correctness-by-construction, Commit-
tee coordination, Conflict resolution.

1. INTRODUCTION
Analysis and design of computing systems often starts with

developing a high-level model of the system. Constructing
models is beneficial, as designers can abstract away imple-
mentation details and validate the model with respect to a set
of intended requirements through different techniques such as
formal verification, simulation, and testing. However, deriv-
ing a correct implementation from a model is always chal-
lenging, since adding implementation details involves many
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Figure 1: A simple BIP model with conflicts.

subtleties that can potentially introduce errors to the result-
ing system. In the context of distributed systems, these sub-
tleties are amplified significantly because of inherently con-
current, non-deterministic, and non-atomic structure of dis-
tributed systems, as well as the occurrence of unanticipated
physical and computational events such as faults. Thus, it
is highly advantageous if designers can somehow derive im-
plementations in a systematic and ideally automated correct
fashion from high-level models. It is, nonetheless, unclear how
to transform an abstract model (where atomicity is assumed
through global state semantics and distribution details are
omitted via employing high-level synchronization primitives)
into a real distributed implementation.

In this paper, we present a novel method for automatically
transforming high-level models in BIP [?] into distributed im-
plementations. The BIP (Behavior, Interaction, Priority) lan-
guage is based on a semantic model encompassing composi-
tion of heterogeneous components. The behavior of atomic
components is described as an automaton or Petri net ex-
tended by data and functions given in C++. Transitions of
the automaton or Petri net are labeled by port names and
functions computing data transformations when they are ex-
ecuted. If a transition of the Petri net can be executed, we
say that the associated port is enabled. BIP uses a composi-
tion operator for obtaining composite components from a set
of atomic components. The operator is parameterized by a
set of interactions between the composed components. One
such interaction type is rendezvous, which is enabled if all
of its participating ports are enabled. Currently, BIP has a
formal operational semantics. The execution of interactions
and local code of components are orchestrated by a sequential
scheduler.

In order to understand the subtleties of transforming a
BIP model into a distributed implementation, consider the
BIP model in Figure 1. In this model, atomic components
B1 · · ·B5 are synchronized by four rendezvous interactions
a1 · · · a4. In sequential models, interactions are executed atom-
ically by a single scheduler. To the contrary, introducing con-
currency and distribution to this model requires the imple-
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mentation to deal with more complex issues:

• (Partial observability) Suppose interaction a1 (and,
hence, components B1 · · ·B3) is being executed. If com-
ponent B3 completes its computation before B1 and B2,
and, ports p4 and p5 are enabled, then interaction a2 is
enabled. In such a case, a distributed scheduler must be
designed, so that concurrent execution of interactions
does not introduce behaviors that were not allowed by
the high-level model.

• (Resolving conflicts) Suppose interactions a1 and a2 are
enabled simultaneously. Since these interactions share
component B3, they cannot be executed concurrently.
We call such interactions conflicting. Obviously, a dis-
tributed scheduler must ensure that execution of con-
flicting interactions is mutually exclusive.

• (Performance) On top of correctness issues, a real chal-
lenge is to ensure that a transformation does not add
considerable overhead to the implementation. After all,
one crucial goal of developing distributed and parallel
systems is to exploit their computing power.

We address the issue of partial observability by breaking
the atomicity of execution of interactions, so that a compo-
nent can execute unobservable actions once the corresponding
interaction is being executed [3]. Resolving conflicts leads us
to solving the committee coordination problem [5], where a
set of professors organize themselves in different committees
and two committees that have a professor in common cannot
meet simultaneously. The original distributed solution to the
committee coordination problem assigns one manager to each
interaction [5]. Conflicts between interactions are resolved
by reducing the problem to the dining or drinking philoso-
phers problems [?], where each manager is mapped onto a
philosopher. Bagrodia [1] proposes an algorithm where mes-
sage counts are used to solve synchronization and exclusion is
ensured by using a circulating token. In a follow-up paper [2],
Bagrodia modifies the solution in [1] by using message counts
to ensure synchronization and reducing the conflict resolu-
tion problem to dining or drinking philosophers. Also, Perez
et al [?] propose another approach that essentially implements
the same idea using a lock-based synchronization mechanism.

As Bagrodia notes [2], a family of solutions to the com-
mittee coordination problem is possible, ranging over fully
centralized to fully decentralized ones, depending upon the
mapping of sets of committees to the managers. Thus, aug-
menting a transformation with different families of solutions
results in different distributed implementations of the initial
BIP model. We expect that each class of solutions exhibits ad-
vantages and disadvantages and, hence, fits a specific type of
applications on a target architecture and platform. Although
the algorithms in [1,2,5] provide us with different families of
solutions, transforming a high-level model into a concrete dis-
tributed implementation involves other details that have not
been taken into account. Examples include preserving func-
tional properties of the original model, computations associ-
ated with interactions and components, data transfer, level
of concurrency, fairness, fault-tolerance, efficiency, and per-
formance. These issues can significantly change the dynamics
and performance of a distributed implementation and each
deserves rigorous research beyond the algorithms and prelim-
inary simulations in [1, 2, 5]. We believe we currently lack a
deep understanding of the impact of these issues and their cor-
relation in transforming high-level models into concrete dis-
tributed implementations.

Contributions. With this motivation, in this paper, we
propose a generic framework for transforming high-level BIP
models into a distributed implementation that allow paral-
lelism between components as well as parallel execution of
non-conflicting interactions by embedding a solution to the
committee coordination problem. To the best of our knowl-
edge, this is the first instance of such a transformation (the
related work mentioned above only focus on impossibility re-
sults, abstract algorithms, and in one instance [2] simulation
of an algorithm). Our method utilizes the following sequence
of transformations preserving observational equivalence:

1. First, we transform the given BIP model into another
BIP model that (1) operates in partial-state semantics,
and (2) expresses multi-party interactions in terms of
asynchronous message passing (Send/Receive primitives).
Moreover, the target BIP model is structured in three
layers:

(a) The components layer consists of a transformation
of behavioral components in the original
model.

(b) The interaction protocol detects enabledness of in-
teractions of the original model and executes them
after resolving conflicts either locally or by the help
of the third layer. This layer consists of a set of
components, each hosting a user-defined subset of
interactions from the original BIP model.

(c) The reservation protocol resolves conflicts requested
by the interaction protocol. The reservation pro-
tocol implements a committee coordination algo-
rithm and our design allows employing any such
algorithm. We, in particular, consider three com-
mittee coordination algorithms: (1) a fully central-
ized algorithm, (2) a token-based distributed algo-
rithm, and (3) an algorithm based on reduction to
distributed dining philosophers.

2. Then, we transform the 3-layer BIP model into C++
code that employs TCP sockets for communication.

We also conduct a set of experiments to analyze the be-
havior and performance of the generated code using different
scenarios (i.e., different partitioning schemes and choice of
committee coordination algorithm). Our experiments clearly
show that each scenario is suitable for a different topology,
size of the distributed system, communication load, and of
course, the structure of the initial BIP model.

Organization. In Section 2, we present the global state
operational semantics of BIP. We describe our 3-layer model
in Section 3. Section 4 is dedicated to detailed description
of our BIP to BIP transformation. In Section 5, we show
the correctness of our transformation. Section 6 presents the
results of our experiments. Finally, in Section 7, we make
concluding remarks and discuss future work.

2. BASIC SEMANTIC MODELS OF BIP
In this section, we present operational global state seman-

tics of BIP. BIP is a component framework for constructing
systems by superposing three layers of modeling: Behavior,
Interaction, and Priority. Since the issue of priorities is irrel-
evant to this paper, we omit it.
Atomic Components We define atomic components as tran-
sition systems with a set of ports labeling individual transi-
tions. These ports are used for communication between dif-
ferent components.
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Definition 1 (Atomic Component) An atomic component
B is a labeled transition system represented by a triple (Q, P,→
) where Q is a set of states, P is a set of communication ports,
→⊆ Q × P × Q is a set of possible transitions, each labeled
by some port.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write

q
p
→ q′, iff (q, p, q′) ∈→. When the communication port is

irrelevant, we simply write q → q′. Similarly, q
p
→ means

that there exists q′ ∈ Q such that q
p
→ q′. In this case, we say

that p is enabled in state q.

In practice, atomic components are extended with variables.
Each variable may be bound to a port and modified through
interactions involving this port. We also associate a guard
and an update function to each transition. A guard is a pred-
icate on variables that must be true to allow the execution
of the transition. An update function is a local computation
triggered by the transition that modifies the variables. Fig-
ure 2(a) shows an atomic component B, where Q = {s, t},
P = {p, q, r}, and →= {(s, p, t), (t, q, s), (t, r, t)}.

Interaction For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}

n
i=1, we assume that their re-

spective sets of ports are pairwise disjoint, i.e., for any two
i 6= j from {1..n}, we have Pi ∩ Pj = ∅. We can therefore
define the set P =

Sn

i=1 Pi of all ports in the system. An in-
teraction is a set a ⊆ P of ports. When we write a = {pi}i∈I ,
we suppose that for i ∈ I , pi ∈ Pi, where I ⊆ {1..n}.

Similar to atomic components, BIP extends interactions by
associating a guard and a transfer function to each of them.
Both the guard and the function are defined over the variables
that are bound to the ports of the interaction. The guard must
be true to allow the interaction. When the interaction takes
place, the associated transfer function is called and modifies
the variables.

Definition 2 (Composite Component) A composite com-
ponent (or simply component) is defined by a composition op-

erator parameterized by a set of interactions γ ⊆ 2P . B
def
=

γ(B1, . . . , Bn), is a transition system (Q, γ,→), where Q =
Nn

i=1 Qi and → is the least set of transitions satisfying the
rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi→i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→ (q′1, . . . , q

′

n)

The inference rule says that a composite component B =
γ(B1, . . . , Bn) can execute an interaction a ∈ γ, iff for each
port pi ∈ a, the corresponding atomic component Bi can ex-
ecute a transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged. Fig-
ure 2(b) illustrates a composite component γ(B0, B1), where
each Bi is identical to component B in Figure 2(a) and γ =
{{p0, p1}, {r0, r1}, {q0}, {q1}}.

3. THE 3-LAYER ARCHITECTURE
In this section, we describe the overall architecture of our

BIP source-to-source transformation. Since we target a dis-
tributed setting, we assume concurrent execution of interac-
tions. However, if two interactions are simultaneously en-
abled, they cannot always run in parallel without breaking
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Figure 2: BIP composite component

semantics of the global state model. This leads to the notion
of structural conflicts between interactions.

Definition 3 Let γ(B1, . . . , Bn) be a BIP model. We say
that two interactions a1, a2 ∈ γ are conflicting iff either:

• they share a common port p; i.e., p ∈ a1 ∩ a2, or

• there exist an atomic component Bi = (Qi, Pi,→i), a
state q ∈ Qi, and two ports p1, p2 ∈ Pi such that (1)

p1 ∈ a1, (2) p2 ∈ a2, and (3) q
p1−→ ∧ q

p2−→.

As discussed in the introduction, handling conflicting inter-
actions in a BIP model running by a sequential scheduler is
quite straightforward. However, in a distributed setting, de-
tecting and avoiding conflicts are not trivial. Thus, our target
BIP model in a transformation should have the following three
properties: (1) preserving the behavior of each atomic compo-
nent, (2) preserving the observational behavior of interactions,
and (3) resolving conflicts in a distributed manner. Since sev-
eral distributed algorithms exist in the literature for conflict
resolution, we design our framework, so that it provides ap-
propriate interfaces with minimal restrictions. Moreover, we
require that interactions in the target model are of the form
Send/Receive with one sender and multiple receivers. Such
interactions can be implemented using conventional commu-
nication primitives (e.g., TCP sockets or MPI).

Definition 4 We say that BSR = γSR(BSR
1 , . . . , BSR

n ) is a
Send/Receive BIP composite component iff we can partition
the set of ports in BSR into three sets Ps, Pr, Pu that are
respectively the set of send-ports, receive-ports, and unary
interaction ports, such that:

• Each interaction a ∈ γSR, is either a Send/Receive in-
teraction a = (s, r1, r2, . . . , rk) with s ∈ Ps and ri ∈ Pr,
or, a unary interaction a = {p} with p ∈ Pu.

• If s is a port in Ps, then there exists one and only
one Send/Receive interaction (s, r1, r2, . . . , rk) ∈ γSR

where all ports r1, . . . , rk are receive-ports. We say that
r1, r2, . . . , rk are the receive-ports associated to s.

• If (s, r1, . . . , rk) is a Send/Receive interaction in γSR

and s is enabled at some global state of BSR, then all
its associated receive-ports r1, . . . , rk are also enabled at
that state.

We design our target BIP model based on the three tasks
identified above, where we incorporate one layer for each task.
We use the high-level BIP model in Figure 1 as a running ex-
ample throughout the paper to describe the concepts of our
transformation. We assume that interaction a1 is in conflict
with only interaction a2, and, interactions a2, a3, and a4 are
in pairwise conflict. Our 3-layer architecture consists of the
following layers.

3



N
T
E
R
A
C
T
I
O
N

R
E
S
E
R
V
A
T
I
O
N

C
O
M
P
O
N
E
N
T

I

o4

f4r4 ok4

f4r4 ok4

f3ok3r3

f3r3 ok3

a4a1

BSR
2 BSR

3 BSR
4 BSR

5BSR
1

RP1

f2r2 ok2

f2r2 ok2

IP1 IP2a3

o1 p1 p2o2 o3p3p4 o5p8

o1 p1 p2o2 o3p3p4 o5p8p9o4p5 o4 p7

a2

p9p7p6

p6

p5

Figure 3: 3-layer model of Figure 1.

Components Layer. Atomic components in the high-level
model are placed in this layer with the following additional
ports per component. The send-port o that shares the list of
enabled ports in the component with the upper layer. Also,
for each port p in the original component, we include a receive-
port p through which the component is notified to execute the
transition labeled by p once the upper layers resolve conflicts
and decide on which components can execute on what port.
The bottom layer in Figure 3 includes components illustrated
in Figure 1.

Interaction Protocol. This layer consists of a set of com-
ponents each hosting a set of interactions in the high-level
model. Conflicts between interactions included in the same
component are resolved by that component locally. For in-
stance, interactions a1 and a2 (resp. a3 and a4) of Figure 1
are grouped into component IP1 (resp. component IP2) in
Figure 3. Thus, the conflict between a1 and a2 (resp. a3 and
a4) is handled locally in IP1 (resp. IP2). To the contrary, the
conflicts between a2 and either a3 or a4 have to be resolved
using an external algorithm that solves the committee coor-
dination problem. Such an algorithm forms the top layer of
our model. The interaction protocol also evaluates the guard
of each interaction and executes the code associated with an
interaction that is selected locally or by the upper layer. The
interface between this layer and the component layer provides
ports for receiving enabled ports from each component (i.e.,
port o) and notifying the components on permitted port for
execution.

Reservation Protocol. This layer accommodates an al-
gorithm that solves the committee coordination problem. For
instance, the external conflicts between interactions a2 and a3,
and, interactions a2 and a4 are resolved by the central com-
ponent RP1 in Figure 3. We emphasize that the structure of
components in this layer solely depends upon the augmented
conflict resolution algorithm. Incorporating a centralized al-
gorithm results in one component RP1 as illustrated in Fig-
ure 3. Other algorithms (as will be discussed in Subsection
4.3), such as ones that use a circulating token [1] or dining
philosophers [2,5] result in different structures. The interface
between this layer and the Interaction Protocol involves ports
for receiving request to reserve an interaction (labeled r) and
responding by either success (labeled ok) or failure (labeled
f).
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Figure 4: SR atomic component of Figure 2(a).

4. TRANSFORMING BIP INTO 3-LAYER BIP
In this section, we describe our technique for transforming

a high-level BIP model into a 3-layer BIP model in detail.
Construction of the three layers are described in Subsections
4.1, 4.2, and 4.3 respectively. Finally, we describe cross-layer
interactions in Subsection 4.4.

4.1 Transformation of Atomic Components
We now present how we transform an atomic component B

from a given BIP model into a Send/Receive atomic compo-
nent BSR that is capable of communicating with the Interac-
tion Protocol in the 3-layer model. As mentioned in Section
3, BSR sends offers to the Interaction Protocol that are ac-
knowledged by a response. An offer includes the set of enabled
ports of BSR at the current state through which the compo-
nent is ready to interact. Enabled ports are specified by a
set of Boolean variables. These variables are modified by a
port update function. The function evaluates each variable
when reaching a new state. When the upper layers select an
interaction involving BSR for execution, BSR is notified by a
response sent on the port chosen. We also include a partic-
ipation number variable n in BSR, which counts the number
of interactions BSR has participated in.

Since each response triggers an internal computation, fol-
lowing [3], we split each state s into two states, namely, s
itself and a busy state ⊥s. Intuitively, reaching ⊥s marks the
beginning of an unobservable internal computation. We are
now ready to define the transformation from B into BSR.

Definition 5 Let B = (Q,P,→) be an atomic component.
The corresponding Send/Receive atomic component is BSR =
(QSR, P SR,→SR) with the additional variables X, such that:

• QSR = Q ∪ Q⊥, where Q⊥ = {⊥s |s ∈ Q}.

• P SR = P ∪ {o}, where the set of variables X =
{xp}p∈P ∪ {n} are associated to offer port o. The port
update function ft modifies X as follows: it sets xp to

true if t
p

−→, to false otherwise, and increments n.

• For each transition (s, p, t) ∈→, we include the following
two transitions in →SR: (⊥s, o, s) and (s, p,⊥t) . The
transition (s, p,⊥t) triggers the function ft.

Figure 4 illustrates transformation of the component in Fig-
ure 2(a) into its corresponding Send/Receive component.

4.2 Interaction Protocol
Given a high-level BIP model B = γ(B0 · · ·Bn), one pa-

rameter to our transformation is a partition of interactions
γ1, . . . , γm. Partitioning of interactions is a means for the
designer to enforce load-balancing and improving the per-
formance of the given model when running in a distributed
fashion. It also determines whether or not a conflict between
interactions can be resolved locally. We associate each class
γj of interactions to an Interaction Protocol component IPj
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that is responsible for (1) detecting enabledness by collecting
offers from the Components Layer, (2) selecting a set of non-
conflicting interactions (either locally or by the help of the
Reservation Protocol), and (3) executing the selected interac-
tions in γi by notifying the corresponding atomic components.
For instance, in Figure 3, we have two classes: γ1 = {a1, a2}
(hosted by component IP1) and γ2 = {a3, a4} (hosted by com-
ponent IP2). In this section, for simplicity of reasoning about
correctness, we construct the behavior of an IP component
by a Petri net.

Definition 6 A 1-Safe Petri net is defined by a triple S =
(L, P, T ) where L is a set of places, P is a set of ports, and
T ⊆ 2L × P × 2L is a set of transitions. A transition τ is a
triple (•τ, p, τ•), where •τ is the set of input places of τ and
τ• is the set of output places of τ .

We represent a Petri net as an oriented bipartite graph
G = (L ∪ T, E). Places are represented by circular vertices
and transitions are represented by rectangular vertices. The
set of oriented edges E is the union of the edges {(l, τ ) ∈
L × T | l ∈ •τ} and the edges {(τ, l) ∈ T × L | l ∈ τ•}.

We depict the state of a Petri net by marking its places
with tokens. We say that a place is marked if it contains a
token. A transition τ can be executed if all its input places in
•τ contain a token. Upon the execution of τ , tokens in input
places •τ are removed and output places in τ• are marked.
Formally, let −→S be the set of triples (m, p,m′), such that
∃τ = (•τ, p, τ•) ∈ T , where •τ ⊆ m and m′ = (m\•τ ) ∪ τ•.
The behavior of a Petri net S can be defined by a labeled
transition system (2L, P,−→S).

Figure 5 shows an example of a Petri net in two successive
markings. It has five places {p1, . . . , p5} and three transitions
{t1, t2, t3}. The places containing a token are depicted with
gray background. The left Petri net is obtained by executing
transition t1. The right Petri net shows the resulting state of
the left Petri net when transition t2 is fired.

Since components of the interaction protocol deal with in-
teractions of the original model, they need to be aware of
conflicts in the original model as defined in Definition 3. We
distinguish two types of conflicting interactions according to
a given partition:

• External: two interactions are externally conflicting if
they conflict and they belong to different classes of the
partition. External conflicts are referred to the Reser-
vation Protocol. For instance, in Figure 3, interaction
a2 is in external conflict with interactions a3 and a4.

• Internal: two interactions are internally conflicting if
they conflict, but they belong to the same class of the
partition. Internal conflicts are resolved by the Inter-
action Protocol within the component that hosts them.
For instance, in Figure 3, interaction a1 is in internal
conflict with interaction a2. If component IP1 chooses
interaction a1 over a2, no further action is required.
Note, however, that if IP1 chooses a2, then it has to
request its reservation from RP1, as it is in conflict with
a3 and a4 externally.

The Petri net that defines the behavior of an Interaction
Protocol component IP j handling a class γj of interactions
is constructed as follows. We refer to Figure 6 as a concrete
example for construction of the Petri net of component IP1

in Figure 3.

Places. We include three types of places:

• For each component Bi involved in interactions of γj , we
include waiting and received places wi and rcv i, respec-
tively. IPj waits in a waiting place until it receives an
offer from the corresponding component. When an of-
fer from component Bi is received (along with the fresh
values of the Boolean variables associated to the ports
of the sender), IPj moves from wi to rcv i. In Figure 6,
since components B1 · · ·B4 are involved in interactions
hosted by IP1 (i.e., a1 and a2), we include waiting places
w1 · · ·w4 and received places rcv1 · · · rcv4.

• For each port p involved in interactions of γj , we in-
clude a sending place sndp. The response to an offer
with xp = true is sent from this place to port p of
the component that has made the offer. In Figure 6,
places sndp1 · · · sndp5 correspond to ports p1 · · · p5 re-
spectively, as they form interactions hosted by IP1 (i.e.,
a1 and a2).

• For each interaction a ∈ γj that is in external conflict
with another interaction, we include an engaged place
ea and a free place fra. In Figure 6, only interaction a2

is in external conflict, for which we add places ea2 and
fra2

.

Variables and ports. For each port p involved in inter-
actions of γj , we include a Boolean variable xp. The value of
this variable is equal to the value of the same variable in the
most recent offer received from the corresponding component.
Also, for each component Bi involved in interactions of γj , we
include an integer ni that stores participation number of Bi.
The set of ports of IP j is the following:

• For each component Bi involved in interactions of γj ,
we include an offer port oi. Each port oi updates the
values of variables ni and xp for each port p exported
by Bi. In Figure 6, ports o1 · · · o4 represent offer ports
for components B1 · · ·B4.

• For each port p involved in interactions of γj , we include
a response port p. In Figure 6, ports p1 · · · p5 correspond
to the ports that form interactions a1 and a2.

• For each interaction a ∈ γj that is in external con-
flict, we include reservation ports ra, oka, and fa. If
a = {pi}i∈I , the port ra is associated to the variables
{ni}i∈I , where I is the set of components involved in
interaction a. In Figure 6, ports ra2 , oka2 , and fa2 rep-
resent the external conflict of a2 with interactions a3

and a4.

• For each interaction a ∈ γj that is not in external con-
flict, we include a unary port a. In Figure 6, we include
unary port a1, as a1 is only in internal conflict with a2.

Transitions. IPj performs two tasks: (1) receiving of-
fers from components in the lower layer and responding to
them, and (2) requesting reservation of an interaction from
the Reservation Protocol in case of an external conflict. The
following set of transitions of IPj performs these two tasks:

• In order to receive offers from a component Bi, we in-
clude transition (wi, oi, rcv i). If Bi participates in an in-
teraction not handled by IPj , we also include transition
(rcv i, oi, rcv i) to receive new offers when Bi takes part

5
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Figure 6: Component IP1 in Figure 3.

in such an interaction. Transitions labeled by o1 · · · o4

in Figure 6 are of this type.

• Requesting reservation of an interaction a ∈ γj that is in
external conflict is accomplished by transition
({rcv i}i∈I ∪ {fra}, ra, {rcv i}i∈I ∪ {ea}), where I is the
set of components involved in interaction a. This transi-
tion is guarded by the predicate

V

i∈I
xpi

which ensures
enabledness of a. Notice that this transition is enabled
when the token for each participating component is in
its corresponding receive place rcv i. Execution of this
transition results in moving the token from a free place
to an engaged place. In Figure 6, transition ra2 is of
this type, and is guarded by xp4 ∧ xp5 .

• For the case where the Reservation Protocol responds
positively, we include the transition
({rcv i}i∈I ∪{ea}, oka, {sndpi

}i∈I ∪{fra}). Upon execu-
tion of this transition, the token from the engaged place
moves to the free place and the tokens from received
move to sending places for informing the corresponding
components. Transition oka2 in Figure 6 occurs when
interaction a2 is successfully reserved by the Reservation
Protocol.

• For the case where the Reservation Protocol responds
negatively, we include the transition (ea, fa, fra). Upon
execution of this transition, the token moves from the
engaged place to the free place. Transition fa2 in Figure
6 occurs when the Reservation Protocol fails to reserve
interaction a2 for component IP1.

• For each interaction a = {pi}i∈I in γj that has only in-
ternal conflicts, let A be the set of interactions that are
in internal conflict with a, but are externally conflict-
ing with other interactions. We include the transition
({rcv i}i∈I∪{fra′}a′∈A, a, {sndpi

}i∈I∪{fra′}a′∈A). This
transition is guarded by the predicate

V

i∈I xpi
and moves

the tokens from receiving to sending places. Tokens from
fra′ places ensure that no internally conflicting interac-
tion requested a reservation. The transition labeled by
a1 in Figure 6 falls in this category.

• Finally, for each component Bi exporting p, we include
the transitions (sndp, p,wi). This transition notifies com-
ponent Bi to execute the transition labeled by port p.
These are transitions labeled by p1 · · · p5 in Figure 6.

4.3 Reservation Protocol
As discussed earlier, the main task of the Reservation Pro-

tocol is to ensure that externally conflicting interactions are
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Figure 7: A centralized Reservation Protocol for Fig-
ure 3.

executed mutually exclusive. The Reservation Protocol can
be implemented using any algorithm that solves the commit-
tee coordination problem. Our design of Reservation Protocol
allows employing any such algorithm with minimal restric-
tions.

We adapt a variation of the idea of the message-count tech-
nique from [2] as a minimal restriction to ensure that our de-
sign makes progress (see Lemma 2) and it does not interfere
with exclusion algorithms. This technique is based on count-
ing the number of times that a component interacts. Each
component keeps a counter n which indicates the current num-
ber of participations of the component in interactions. The
Reservation Protocol ensures that each participation number
is used only once. That is, each component takes part in only
one interaction per transition. To this end, in the Reservation
Protocol, for each component Bi, we keep a variable Ni which
stores the latest number of participations of Bi. Whenever a
reserve message ra for interaction a = {pi}i∈I is received by
the Reservation Protocol, the message provides a set of par-
ticipation numbers ({na

i }i∈I) for all components involved in
a. If for each component Bi, the participation number na

i is
greater than Ni, then the Reservation Protocol acknowledges
successful reservation through port oka and the participation
numbers in the Reservation Protocol are set to values sent
by the interaction protocol. To the contrary, if there exists a
component whose participation number is less than or equal
to what Reservation Protocol has recorded, then the corre-
sponding component has already participated for this number
and the Reservation Protocol replies failure via port fa.

Now, since the structure and behavior of the Reservation
Protocol components depend on the employed algorithm, we
only specify an abstract set of minimal restrictions of this
layer as follows:

• For each component Bi, the Reservation Protocol main-
tains a variable Ni indicating the last participation num-
ber reserved for Bi.

• For each interaction a = {pi}i∈I handled by the reser-
vation protocol, we include three ports: ra, oka and fa.
The receive-port ra accepts reservation requests contain-
ing fresh values of variables na

i . The send-ports oka and
fa accept or reject the latest reservation request, and Ni

variables are updated in case of positive response.

• Each ra message should be acknowledged by exactly one
oka or fa message.

• Each component of the Reservation Protocol should re-
spect the message-count properties described above.

4.3.1 Centralized Implementation
Figure 7 shows a centralized Reservation Protocol for the

model in Figure 3. In fact, the component in Figure 7 is the
component RP1 in Figure 3. A reservation request, for in-
stance, ra2 , contains fresh variables na2

3 and na2
4 (correspond-
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Figure 8: Token-based Reservation Protocol for the
BIP models in Figures 1 and 3.

ing to components B3 and B4). The token representing in-
teraction a2 is then moved from place waita2 to place treata2 .
From this state, the Reservation Protocol can still receive a
request for reserving a3 and a4 since waita3 and waita4 still
contain a token. This is where message-counts play their role.
The guard of transition oka2 is (na2

3 > N3)∧(na2
4 > N4) where

Ni is the last known used participation number for Bi. Note
that since execution of transitions are atomic in BIP, if tran-
sition oka2 is fired, it modifies variables Ni atomically (i.e.,
before any other transition can take place). We denote this
implementation by RP .

4.3.2 Token Ring Implementation
Another example of a Reservation Protocol is inspired by

the token-based algorithm due to Bagrodia [1], where we add
one reservation component per externally conflicting interac-
tion. Figure 8 shows the respective components for the model
presented in Figure 3. Exclusion is ensured using a circulating
token carrying Ni variables; i.e., the component that owns the
token compares the value of the received ni variables with the
Ni variables from the token. If they are greater, an ok mes-
sage is sent to the component that handles that interaction
and the Ni values on the token are updated. Otherwise, a
fail message is sent. Subsequently, the reservation component
releases the token via port ST , which is received by the next
component via port RT . Obviously, this algorithm allows a
better level of distribution at the reservation layer. We denote
this implementation by TR.

4.3.3 Implementation Based on Dining Philosophers
A third choice of Reservation Protocol algorithm is an adap-

tion of the hygienic solution to the dining philosophers prob-
lem presented in [2,5]. Its Send/Receive BIP implementation
is presented in Figure 9. Similar to token ring, each externally
conflicting interaction is handled by a separate component. If
two interactions are conflicting, the two corresponding com-
ponents share a fork carrying Ni variables corresponding to
the atomic components causing the conflict. In order to posi-
tively respond to a reserve, a component has to fetch all forks
shared with its neighbors. Then, it compares participation
numbers received from the reservation request and from the
forks and responds accordingly. After such a response, the
forks become dirty. Finally, the component sends the forks if
it is asked to do so. We denote this implementation by DP .
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Figure 9: Dining philosophers-based Reservation
Protocol for the BIP models in Figures 1 and 3.

4.4 Cross-Layer Interactions
In this subsection, we define the interactions of our 3-layer

model. Following Definition 4, we construct Send/Receive in-
teractions by specifying which one is the sender. Given a BIP
model γ(B1 · · ·Bn), a partition γ1 · · · γm, and the obtained
Send/Receive components BSR

1 · · ·BSR
n , interaction protocol

components IP1 · · · IPm, and Reservation Protocol compo-
nents RP1 · · ·RPk, we construct the Send/Receive interac-
tions γSR according to Definition 4 as follows:

• For each component Bi, γSR contains a multicast con-
nector formed by all ports oi, where Bi is the sender.

• For each Interaction Protocol component IP j and port
p in IPj , we include a binary interaction, such that port
p of IP j is the sender, and, port p of the corresponding
component in the components layer is the receiver.

• For each interaction a that is in external conflict, γSR

contains an interaction between ra ports, such that the
Interaction Protocol is the sender and Reservation Pro-
tocol is the receiver. Likewise, γSR contains interactions
between oka and fa ports.

Note that the interaction do not depend on the Reservation
Protocol. The entire model obtained is denoted BSR

RP , BSR
TR

or BSR
DP following the embedded Reservation Protocol. The

interactions between the three layers of our running example
are presented in Figure 3. The send-ports are graphically
denoted by triangles and receive-ports by bullets.

5. CORRECTNESS
In Subsection 5.1, we show that our 3-layer model meets the

constraints of the Send/Receive model specified in Section 3.
In Subsection 5.2, we prove that a BIP model is observation-
ally equivalent with the BIP model obtained by the trans-
formation of Section 4. Finally, we prove the correctness of
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models embedding different implementations of Reservation
Protocol in Subsection 5.31.

5.1 Compliance with Send-Receive Models

Proposition 1 Given a BIP model B, the model BSR ob-
tained by transformation of Section 4 meets the constraints of
Definition 4.

Proof sketch. We need to show that receive-ports of BSR are
enabled whenever the corresponding send-ports are enabled.
This holds since communications between two successive lay-
ers follow a request/acknowledgement pattern. Whenever a
layer sends a request, it enables the receive-port for receiving
acknowledgement and no new request is sent until the first
one is acknowledged.

5.2 Observational Equivalence between Origi-
nal and Transformed BIP Models

We recall the definition of observational equivalence of two
transition systems A = (QA, P ∪{β},→A) and B = (QB, P ∪
{β},→B). It is based on the usual definition of weak bisim-
ilarity [7], where β-transitions are considered unobservable.
The same definition is trivially extended for atomic and com-
posite BIP components.

Definition 7 (Weak Simulation) A weak simulation over
A and B, denoted A ⊂ B, is a relation R ⊆ QA × QB, such

that we have ∀(q, r) ∈ R, a ∈ P : q
a
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R∧r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ :

(q′, r′) ∈ R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such that
R and R−1 are both weak simulations. We say that A and B
are observationally equivalent and we write A ∼ B if for each
state of A there is a weakly bisimilar state of B and conversely.
In this subsection, our goal is to show that B and BSR are
observationally equivalent. We consider the correspondence
betwen actions of B and BSR as follows. For each interaction
a ∈ γ, where γ is the set of interactions of B, we associate
either the binary interaction oka or the unary interaction a,
depending upon existence of an external conflict. All other
interactions (offer, response, reserve, fail) are unobservable
and denoted β.

We proceed as follows to complete the proof of observa-
tional equivalence. Amongst unobservable actions β, we dis-
tinguish between β1 actions, that are communication interac-
tions between the components layer and the Interaction Pro-
tocol (namely offer and response), and β2 actions that are
communications between the Interaction Protocol and and
Reservation Protocol (namely reserve and fail). We denote
qSR a state of BSR and q a state of B. A state of BSR from
where no β1 action is possible is called a stable state, in the
sense that any β action from this state does not change the
state of the component layer.

Lemma 1 From any state qSR, there exists a unique stable

state [q]SR such that qSR β∗

1−→ [q]SR.

We now show a property of the participation numbers. Let
B.n mean ‘the variable n that belongs to component B’.

1For reasons of space, all proofs are available at http://
www-verimag.imag.fr/~bonakdar/emsoft10.pdf.

Lemma 2 When BSR is in a stable state, for each couple
(i, j), such that Bi is involved in interactions handled by IPj,
we have Bi.ni = IP j .ni > RP .Ni.

Since we need to take into account participation numbers
ni, we introduce an intermediate centralized model Bn. This
new model is a copy of B that includes in each atomic compo-
nent an additional variable ni which is incremented whenever
a transition is executed. As B and Bn have identical set of
states and transitions labeled by the same ports, they are ob-
servationally equivalent. (They are even strongly bisimilar.)

Lemma 3 B ∼ Bn.

We are now ready to state and prove our central result.

Proposition 2 BSR ∼ Bn.

Proof sketch. We define a relation R between the states QSR

of BSR and the states Q of Bn as follows: R = {(qSR, q)|∀i ∈
I : [q]SR

i = qi} where qi denotes the state of Bn
i at global

state q and [q]SR
i denotes the state of BSR

i at global state
[q]SR. The three next assertions hold and prove that R is a
weak bisimulation:

(i) If (qSR, q) ∈ R and qSR β
−→ rSR, then (rSR, q) ∈ R.

(ii) If (qSR, q) ∈ R and qSR a
−→ rSR, then ∃r ∈ Q : q

a
−→ r

and (rSR, r) ∈ R.

(iii) If (qSR, q) ∈ R and q
a

−→ r, then ∃rSR ∈ QSR : qSR β∗a
−→

rSR and (rSR, r) ∈ R.

5.3 Interoperability of Reservation Protocol
As mentioned in Subsection 4.3, the centralized implemen-

tation RP of the Reservation Protocol can be seen as a specifi-
cation. We also proposed two other implementations, respec-
tively, token-ring TR and dining philosophers DP . However,
these implementations are not observationally equivalent to
the centralized implementation. More precisely, the central-
ized version defines the most liberal implementation: if two
reservation requests a1 and a2 are received, the protocol may
or may not acknowledge them, in a specific order. This gen-
eral behavior is not implemented neither by the token ring
nor by the dining philosophers implementations. In the case
of token ring, the response may depend on the order the token
travels through the components. In the case of dining philoso-
phers, the order may depend on places and the current status
of forks.

Nevertheless, we can prove an observational equivalence if
we consider weaker versions of the above implementations.
More precisely, for the token ring protocol, consider the weaker
version TR(w) which allows to release the token or provide a
fail answer regardless of the values of counters. Likewise, for
the dining philosophers protocol, consider the weaker version
DP(w), where forks can always be sent to neighbors, regardless
of their status and the values of counters. Clearly, a weakened
Reservation Protocol is not desirable for a concrete implemen-
tation since they do not enforce progress. But, they play a
technical role in proving the correctness of our approach. The
following proposition establishes the relation between the dif-
ferent implementations of the Reservation Protocol.

Proposition 3 (i) RP ∼ TR(w) ∼ DP (w)

(ii) TR ⊂ TR(w), DP ⊂ DP(w).
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Figure 10: Partial BIP model for diffusing computa-
tions.

Let us denote by BSR
X the 3-layer model obtained from the

initial system B and embedding algorithm X in the Reserva-
tion Protocol. Also, let us denote Tr(B) the set of all possible
traces of observable actions allowed by an execution of B. The
following proposition states the correctness of our implemen-
tation.

Proposition 4 (i) B ∼ BSR ∼ BSR

TR(w) ∼ BSR

DP(w)

(ii) Tr(B) ⊇ Tr(BSR
TR) and Tr(B) ⊇ Tr(BSR

DP ).

6. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments.

Our implementation automatically generates C++ code from
the 3-layer BIP model developed in Sections 3 and 4, where
Send/Receive interactions are implemented by TCP sockets
primitives. Code generation involves generating stand-alone
executables for each Send/Receive component in each layer of
the 3-layer BIP model. The code of each component simulates
its automaton or Petri net using the technique presented in [4].

In the following, we denote each experiment scenario by
(i, X), where i is the number of interaction partitions and
X is the choice among the three Reservation Protocols de-
scribed in Subsection 4.3 (i.e., RP , TR, or DP). For the
case where partitioning of interactions results in having no
external conflicts and, hence, requiring no reservation compo-
nent, we use the symbol ‘−’ to denote an empty Reservation
Protocol. All experiments in this section are conducted on
five quad-Xeon 2.6 GHz machines with 6GB RAM running
under Debian Linux and connected via a 100Mbps Ethernet
network. Our aim is to show that different conflict resolu-
tion algorithms and partitioning may result in significantly
different performance.

For our experiments, we model a simplified version of
Dijkstra-Scholten termination detection algorithm for diffus-
ing computations [6] in BIP. Diffusing computation is the task
of propagating a message across a distributed system; i.e., a
wave that starts from an initial node and diffuse to all pro-
cesses in a distributed system. Diffusing computation has
numerous applications such as traditional distributed dead-
lock detection and reprogramming of modern sensor networks.
One challenge in diffusing computation is to detect its termi-
nation. In our version, we consider a torus (wrapped around
grid) topology for a set of distributed processes, where a span-
ning tree throughout the distributed system already exists;
each process has a unique parent and the root process is its
own parent. Termination detection is achieved in two phases:
(1) the root of the spanning tree possesses a message and
initiates a propagation wave, so that each process sends the

(24, [RP, TR, DP ])(1,−) (2,−) (2, [RP, TR, DP ]) (4, [RP, TR, DP ])

Figure 11: Different scenarios for diffusing computa-
tions.

message to its children, and (2) once the first wave of messages
reaches the leaves of the tree, a completion wave starts, where
a parent is complete once all its children are complete. In this
setting, when the root is complete, termination is detected.

Our BIP model has n × m atomic components (see Figure
10 for a partial model). Each component participates in two
types of interactions: (1) four binary rendezvous interactions
(e.g., I0 · · · I3) to propagate the message to its children (as in
a torus topology, each node has four neighbors and, hence,
potentially four children), and (2) one 5-ary rendezvous inter-
action (e.g., I) for the completion wave, as each parent has to
wait for all its children to complete.

Our first set of experiments is on a 6 × 4 torus. We ap-
ply different partitioning scenarios as illustrated in Figure 11.
Figure 12(a) shows the time needed for 100 rounds of detect-
ing termination of diffusing communication for each scenario.
In the first two scenarios, the interactions are partitioned,
so that all conflicts are internal and, hence, resolved locally
by the Interaction Protocol. In case of (2,−), all interac-
tions of the propagation wave are grouped into one compo-
nent of the Interaction Protocol and all interactions related to
the completion wave are grouped into the second component.
Such grouping does not allow parallel execution of interac-
tions. This is the main reason that the performance of (1,−)
and (2,−) are the worst in Figure 12(a).

Next, we group all interactions involved in components
1 · · · 12 into one component and the rest in a second com-
ponent of the Interaction Protocol. This constitutes experi-
ments (2, RP), (2, TR), and (2,DP). Such partitioning allows
more parallelism during propagation and completion waves,
as an interaction in the first partition can be executed in par-
allel with an interaction in the second partition2. This is why
the performance of (2,RP/TR/DP) is better than (1,−) and
(2,−). Now, since almost all propagation interactions con-
flict with each other and so do all completion interactions, in
case of the dining philosophers algorithm, the conflict graph
is not dense. Hence, a small of number decisions can be made
in a local neighborhood of philosophers. It follows that the
performance of (2, TR) is quite competitive with (2, DP). It
can also be seen that (2,RP) performs as good as (2, TR)
and (2, DP). This is due to the fact that there exist only
two partitions, which results in a low number of reservation
requests.

Figure 12(a) also shows the same type of experiments with
4 and 24 partitions. Similar to the case of two partitions,
the performace of TR and RP for 4 and 24 partitions com-
pete with each other. However, RP and TR outperform DP .
This is due to the fact that in case of DP , each philosopher
needs to acquire 4 forks, which requires considerable commu-
nication. On the other hand, TR does not require as much
communication, as the only task it has to do is releasing and
acquiring the token. Moreover, the level of parallelism in DP
in case of a 6 × 4 torus is not high enough to overcome the
communication volume.

2Execution of each interaction involves 10ms suspension of
the corresponding component in the Interaction Protocol to
perform and I/O command.
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Figure 12: Performance of termination detection in
diffusing computation in different scenarios.

In the next experiment, following the lesson learned from
the tradeoff between communication volume and parallelism,
we design a scenario where we exploit the fact that each reser-
vation component in DP resolves conflict through communi-
cating with its neighboring components. This is not the case
in TR. Thus, we consider a 20 × 20 torus. As can be seen
in Figure 12(b), the performance of DP is significantly bet-
ter than TR. This is solely because when we have a large
number of components, in TR, the token has to travel a long
way in order to allow parallel execution of interactions. To
the contrary, in DP , the Reservation Protocol components act
in their local neighborhood and although more communica-
tion is needed, it allows better concurrency and, hence, higher
simultaneous execution of interactions. We expect that by in-
creasing the size of the torus, DP outperforms RP as well.

We conclude this section by stating the main lesson learned
from our experiments:

Different partitioning schemes and choice of com-
mittee coordination algorithm for distributed con-
flict resolution suit different topologies and settings
although they serve a common purpose. Designers
of distributed applications should have access to a
library of algorithms and choose the best according
to parameters of the application.

7. CONCLUSION
We focused on developing a generic framework for auto-

mated transformation of high-level BIP models in terms of
a set of components glued by rendezvous interactions into
distributed implementations. In a distributed setting, imple-
mentation of a multi-party rendezvous results in solving the
committee coordination problem [5], where a set of professors
are organized in a set of committees and two committees can
meet concurrently only if they have no professor in common;
i.e., they are not conflicting. Our transformation consists of
two steps. First, it takes as input a BIP model and gener-
ates another BIP model which contains components glued by
Send/Receive interactions in the following three layers: (1)
the components layer consists of a transformation of behav-
ioral atomic components in the original model, (2) the In-
teraction Protocol detects enabledness of interactions of the
original model and executes them after resolving conflicts ei-
ther locally or by the help of the third layer, and (3) the
Reservation Protocol resolves conflicts in a distributed fash-
ion. The Reservation Protocol implements a committee coor-
dination algorithm and our design allows employing any such
algorithm. The second step of our transformation takes the
intermediate three-layer BIP model as input and generates
C++ executables using TCP sockets for communication. We

reported the lessons learned through conducting several ex-
periments using different algorithms in the Reservation Pro-
tocol and partitioning schemes. As predicated, there is no
silver bullet to automate code generation of distributed ap-
plications. Hence, designers must have access to a formal
framework and a rich library of algorithms such as the ones
presented in this paper to develop correct and yet efficient
distributed applications automatically.

For future work, we are considering several research direc-
tions. An important extension is to allow the Reservation
Protocol to incorporate different algorithms for conflict res-
olution simultaneously, so that each set of conflicting inter-
actions within the same system is handled by the most ap-
propriate algorithm. In this context, we are also planning
to explore other algorithms, such as solutions to distributed
graph matching and distributed independent set for better
understanding of tradeoffs between parallelism, load balanc-
ing, and network traffic. Another important line of research is
to study the overhead of our transformation where communi-
cation cost is crucial such as in peer-to-peer and large sensor
networks. Finally, given the recent advances in the multi-
core technology, we plan to customize our transformation for
multi-core platforms.
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