
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Source-to-Source Architecture Transformation for
Performance Optimization in BIP

Marius Bozga, Mohamad Jaber, and Joseph Sifakis

Invited Paper

Abstract—Behavior, Interaction, Priorities (BIP) is a component
framework for constructing systems from a set of atomic compo-
nents by using two kinds of composition operators: interactions
and priorities.

In this paper, we present a method that transforms the interac-
tions of a component-based program in BIP and generates a func-
tionally equivalent program. The method is based on the successive
application of three types of source-to-source transformations: flat-
tening of components, flattening of connectors, and composition of
atomic components. We show that the system of the transforma-
tions is confluent and terminates. By exhaustive application of the
transformations, any BIP component can be transformed into an
equivalent monolithic component. From this component, efficient
standalone C++ code can be generated.

The method combines advantages of component-based descrip-
tion such as clarity, incremental construction, and reasoning with
the possibility to generate efficient monolithic code. It has been in-
tegrated in the design methodology for BIP and it has been success-
fully applied to two non trivial examples described in this paper.

I. INTRODUCTION

C OMPONENT-BASED systems are desirable because
they allow subsystems to be reused as well as their incre-

mental modification without requiring global changes. Their
development requires methods and tools supporting a concept
of architecture which characterizes the coordination between
components. An architecture is the structure of a system, which
involves components and relationships between the externally
visible properties of those components. The global behavior of
a system can in principle be inferred from the behavior of its
components and its architecture.

An advantage of component-based systems is that they have
logically clear descriptions. Nonetheless, clarity may be at the
detriment of efficiency. Naive compilation of component-based
systems results in great inefficiency as a consequence of the
interconnection of components [17].

Source-to-source transformations have been considered as a
powerful means for optimizing programs [6], [15]. In contrast to
conventional optimization techniques, these can be applied for
deeper semantics-preserving transformations which are visible
to the programmer and subject to his direction and guidance.
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Source-to-source architecture transformations transform a
component-based system into a functionally equivalent system,
by changing the structure of its architecture. They may affect
performance and quality attributes. They are useful for finding
functionally equivalent systems that meet different extra-func-
tional (platform dependent) requirements.

We study transformations for a subset of the Behavior, Inter-
action, Priority (BIP) language [4], [9] where an architecture is
characterized as a hierarchically structured set of components
obtained by composition from a set of atomic components. In
BIP, composition is parameterized by interactions and priori-
ties between the composed components. In this paper, we con-
sider only composition by interactions. Composite components
can be hierarchically structured. BIP has been used to model
complex heterogeneous systems. It can be considered as an ex-
tension of C with powerful primitives for multiparty interaction
between components. It has a compilation chain allowing the
generation of C++ code from BIP models. The generated code is
modular and can be executed on a dedicated platform consisting
of an Engine which orchestrates the computation of atomic com-
ponents by executing their interactions. Hierarchical description
allows incremental reasoning and progressive design of com-
plex systems. Nonetheless, it may lead to inefficient programs
if structure is preserved at run time. Compared to functionally
equivalent monolithic C programs, BIP programs may be more
than two times slower. This overhead is due to the computation
of interactions between components by the Engine, as illustrated
later in this paper on some examples.

The aim of the work is to show that it is possible to synthesize
efficient monolithic code from component-based software de-
scribed incrementally. We study source-to-source transforma-
tions for BIP allowing the composition of components and thus
leading to more efficient code. These are based on the opera-
tional semantics of BIP which allows to compute the meaning
of a composite component as a behaviorally equivalent atomic
component.

A BIP component is characterized by its interface and its be-
havior. An interface consists of a set of ports used to specify in-
teractions. Each port has an associated variable which is
visible when an interaction involving is executed. We assume
that the sets of ports and variables of components are disjoint.
The behavior of a composite component is obtained by com-
posing the behavior of its atomic components (see Fig. 1).

The behavior of atomic components is described as a Petri
net extended with data and functions given in C. A transition of

1551-3203/$26.00 © 2010 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 1. Example 1.

the Petri net is labeled with a trigger and a function describing
a local computation. A trigger consists of a guard on (local)
data and a port through which synchronization is sought. For
a given marking and data state, a transition can be executed if it
is enabled for this marking, its guard is true and an interaction
involving is possible. Its execution is atomic. It is initiated by
the interaction and followed by the execution of .

Composition consists in applying a set of connectors to a set
of components. A connector is defined by:

1) its port and the associated variable ;
2) its interaction defined by a set of ports of the

composed components ;
3) functions and , specifying the flow of data

upstream and downstream, respectively (see Fig. 1).
The global behavior resulting from the application of a con-
nector to a set of components is defined as follows.

An interaction of the connector is possible only if
for each one of its ports , there exists an enabled transition in
some component labeled by . Its execution involves two steps:

1) the variable is assigned the value ;
2) the variables associated with the ports are assigned

values .
The execution of an interaction is followed by the execution of
the local computations of the synchronized transitions. In Fig. 1,
we provide a simple BIP model. It is composed of three atomic
components, which compute integers exported through the vari-
ables , and . The connector defines the interaction (strong
synchronization) between , and . As a result of this inter-
action, each component receives the maximum of the exported
values.

A composite component is obtained by successive applica-
tion of connectors from a set of atomic components. It is a finite
set of components equipped with an acyclic containment rela-
tion and a set of connectors such that: 1) minimal elements are
atomic components and 2) if is the port of a connector then
its interaction consists only of ports of components contained
in the component with port . The containment relation defines
for each component a level in the hierarchy. A component of
level is obtained by composing a set of components of lower
level among which there is at least one component of level .
The semantics of a composite component is defined from the se-
mantics of atomic components (components at level 0) and the
semantics of composition by using connectors. It allows com-
puting for a composite component, an atomic component with
an equivalent global behavior.

The main contributions of this paper are the following. We de-
fine composite components in BIP and their semantics. We show
how by incremental composition of the components contained
in a composite component, a behaviorally equivalent component

can be computed. This composition operation has been imple-
mented in the BIP2BIP tool, by using three types of source-to-
source transformations. A set of interacting components is re-
placed by a functionally equivalent component. By successive
application of compositions, an atomic component can be ob-
tained, that is a component with no interactions.

The transformation from a composite component to an atomic
one is fully automated and implemented through three steps.

1) Connector flattening which replaces the hierarchy on com-
ponents by a set of hierarchically structured connectors ap-
plied on atomic components.

2) Connector flattening which computes for each hierarchi-
cally structured connector an equivalent flat connector.

3) Component composition which composes atomic compo-
nents to get an atomic component.

Using such a transformation allows to combine advantages of
component-based descriptions such as clarity and reuse with
efficient implementation. The generated code is readable and
by-construction functionally equivalent to the component-based
model. We show through nontrivial examples the benefits of this
approach.

To the best of our knowledge, we have not seen major work on
source-to-source transformations for component-based frame-
works. In contrast to other frameworks, component composition
in BIP is based on operational semantics. Furthermore, com-
position can be expressed not only at execution level but also
at source level. Similar component frameworks such as [2] and
[14] have well-defined denotational semantics. Nonetheless, it
is not clear how to define component composition at source level
from these semantics. There also exist many component frame-
works without rigorous semantics. In this case, using ad hoc
transformations, may easily lead to consistences, e.g., trans-
formations may not be confluent.

Finally, there are strong similarities between our source-to-
source transformations for BIP and code optimization tech-
niques applied by language compilers. For example, compila-
tion of synchronous languages [16], or optimizing communi-
cations in periodic reactive systems [12], [13] use very similar
techniques for flattening structure and composing Petri net
behavior. Nonetheless, their underlying models are completely
much simpler than BIP. The model considered in [12] and [13] is
an extension of Kahn process networks allowing nondetermin-
istic waiting on multiple input channels. The communication
is binary, through point-to-point message passing on FIFO
channels. In contrast, BIP allows for general n-ary (multiparty)
synchronous interactions, allowing to simultaneously transfer
data between any number of components. Kahn process net-
works and their extensions can be structurally represented in
BIP, whereas the reverse is not feasible, in general.

Additionally, the intermediate models used for compilation of
Esterel [16] are various forms of control flow graphs (sequential,
concurrent, etc.). Although we are using a similar model for rep-
resentation of behavior in atomic components, we believe that
such models are not equally appropriate for system or applica-
tion-level description. Contrarily to BIP, these models do not
enforce any separation between computation, coordination and
communication. All these issues get mixed due to the arbitrary
use of primitives such as explicit fork/join, or communication
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Fig. 2. (a) Example of an atomic component in BIP. (b) A connector with two
ports � , � and exported port�.

through shared variables. Clearly, control-flow graphs models
can be efficiently implemented, most likely when they are pro-
duced from high-level structural descriptions, however, they are
in general more difficult to understand and analyze.

This paper is structured as follows. In Section II, we define
the syntax for the description of structured components in BIP.
In Section III, we define the semantics by successive application
of the three source-to-source transformations. In Section IV, we
provide benchmarks for two examples: a MPEG encoder and
a concurrent sorting program. In Section V, we discuss other
applications and future developments.

II. COMPONENT-BASED CONSTRUCTION

We define atomic components and their composition in BIP.
Definition 1 (Port): A port is defined by:
• —the port identifier.
• —the data variable associated with the port.
An atomic component is a Petri net extended with data. It

consists of a set of ports used for the synchronization with
other components, a set of transitions and a set of local vari-
ables . Transitions describe the behavior of the component.
They are represented as a labeled relation on a set of control lo-
cations .

Definition 2 (Atomic Component): An atomic component
is defined by: , where

• is a Petri net, that is:
— is a set of ports;
— is a set of control locations;
— is a set of transitions.

• is a set of variables and for each transi-
tion , is a guard and is an action .

Fig. 2(a) shows an example of an atomic component with two
ports , , a variable , and two control locations , . At
control location , the transition labeled is enabled. When an
interaction through takes place, a random value is assigned for
the variable . This value is exported through the port . From
the control location , the transition labeled can occur (the
guard is true by default), the variable is eventually modified
and the value of is printed.

We will use the following notations. For a transition ,
we define its preset (resp. postset ) as the set of the con-
trol locations which are direct predecessors (resp. successors)
of this transition. Moreover, we use the dot notation to denote
the parameters of atomic components. For example, means
the set of ports of the atomic component .

Given a Petri net , we define the set of one-safe
markings as the set of functions . Given two
markings , , we define inclusion iff for all

, . Also, we define addition
as the marking such that, for all ,

. Given a set of places , we define its characteristic
marking by for all and for
all . Moreover, when no confusion is possible from
the context, we will simply use to denote its characteristic
marking .

Definition 3 (Atomic Component Semantics): The seman-
tics of an atomic component

is defined as the labeled transition system
, where

• is the set of states defined by:
— the set of one-safe markings;
— is the set of valuations of variables

.
• is the set of labels.
• is the set of transitions defined by

the following rule:

Definition 4 (Connector): A connector is
defined as follows:

• is the exported port of the connector .
• is the support set of , that is, the set of

ports that synchronizes.
• , where

— is the guard of , an arbitrary predicate ;
— is the upward update function of of the form,

;
— is the downward update function of of the form,

.
Fig. 2(b) shows a connector with two ports , , and ex-

ported port . Synchronization through this connector involves
two steps: 1) The computation of the upward update function
by assigning to the maximum of the values of and as-
sociated with and . 2) The computation of the downward
update function by assigning the value of to both and .

For a set of connectors , we define the domi-
nance relation on as follows:

That is, dominates means that the exported port of be-
longs to the support set of [see Fig. 3(a)].

Definition 5 (Flat Connectors): is a set of flat connectors,
iff no connector dominates another, that is, , we have

.
Let be a set of connectors such that has no cycle

and let . We denote by:
• , the set of

maximal connectors in according to relation.
• , the tree of connectors

where the root node, at the top, is .
• Let ,

, the leaf connectors of the tree ,
, the support set of ports

for the leaf connectors of the tree .
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Fig. 3. (a) � dominates � . (b) Example 2.

Definition 6 (Hierarchical Connectors Semantics): Let a
set of connectors, and let , where .
Let be a partial valuation of the variables of the ports in the
bottom connectors of , .
The upward valuation is obtained by propagating
values from ports in the bottom connectors into the tree ac-
cording to upward update functions , as long as the guard
conditions allow them. In a dual manner, we define the
downward valuation obtained by transforming a given
valuation on ports of connector according to downward
update functions . More precisely, guards and update
functions, , and are defined as follows:

Definition 7 (Component): Composite components are de-
fined from existing components (atomic or composite) by the
following grammar:

where
• is an atomic component.
• is a set of constituent components.
• , is the set of ports of the

component, that is contains the ports of the constituent
components and the exported ports of the connectors.

• is a set of connectors, such that:
1) has no cycle;
2) ( is defined above);
3) Each uses at most one port of every constituent

component, that is, , .
Notice that a component is either an atomic component or a
composite component obtained as the composition of a set of
constituent components by using a set of connectors

. The restriction 3) is needed to prevent simulta-
neous firing of two or more transitions in the same atomic com-
ponent, because they may affect the same variables.

For example, consider the component consisting of two com-
posite components shown in Fig. 3(b). Each one of these com-
posite components consists of three identical atomic compo-
nents described in Fig. 2(a), connected by using the connector
described in Fig. 2(b). Each atomic component generates an in-
teger. Then, it synchronizes with all the other atomic compo-
nents. During synchronization the global maximal value is com-
puted and each atomic component receives the maximum of the
values generated.

Definition 8 (Flat Component): Composite component is
flat, iff the set of constituent component are atomic
components.

The operational semantics of composite components is recur-
sively defined on the component structure. For atomic compo-
nents, their semantics coincides with the semantics of the under-
lying behavior. For composition, the semantics is obtained by
restricting the parallel behavior according to the interactions.

Definition 9 (Flat Component Semantics): The se-
mantics of component is a labeled transition system

defined inductively on the structure of

as follows.
1) is an atomic component, defined by an atomic behavior

. Then,
(see Definition 3).

2) is a composite component defined as the
. Let be

the semantics of its atomic components. The labeled
transition system is defined as:

• is the of states, the Cartesian product
of set of states of subcomponents;

• is the set of labels;
• is the transition relation, defined

by the following rule shown in the equation at the bottom
of the page.
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Fig. 4. (a) Component flattening. (b) Component flattening for Example 2.

Fig. 5. Connector glueing.

III. SEMANTICS (TRANSFORMATIONS)

We define the semantics of composite components by a set of
transformations which successively transform them into atomic
components. That is, they eliminate component hierarchy and
the hierarchical connectors by computing the product behavior.

The transformation from a composite component to an atomic
one involves three steps: Component flattening, Connector flat-
tening, and Component composition.

In this section, we describe the three transformations, and we
illustrate them in Example 2 shown in Fig. 3(b).

A. Component Flattening

This transformation replaces the hierarchy on components by
a set of hierarchically structured connectors applied on atomic
components. Consider a composite component , obtained as
the composition of a set of components . The purpose
of this transformation is to replace each non atomic component

of by its description. By successive applications of this
transformation, the component can be modeled as the set of
its atomic components and their hierarchically structured con-
nectors [see Fig. 4(a)].

Definition 10 (Component Flattening): Consider a non
atomic component such that there
exists a non atomic component with

. We define as
the component .
Component flattening is defined by the following function:

if
if

Proposition 1: Component flattening is well-defined, i.e.,
is a function which produces a unique result on every input com-
ponent, and terminates in a finite number of steps.

Proof: Regarding unicity of the result, we can show that,
if two constituent components, respectively, and can be
replaced inside the composite component , then the replace-
ment can be done in any order and the final result is the same.

That is, formally we have
. The result follows immediately from the defini-

tion and elementary properties of union on sets.
Regarding termination, every transformation step decreases

the overall number of composite components by one, so com-
ponent flattening eventually terminates when all the components
are atomic.

By applying to Example 2 the transformation
then , we obtain the new compo-

nent in Fig. 4(b).
Finally, notice that this transformation never increases the

structural complexity of the transformed component. The trans-
formation does not change the set of atomic components as well
as the set of the hierarchical connectors. Hence, it preserves the
operational semantics of the original model.

B. Connector Flattening

This transformation flattens hierarchical connectors. It takes
two connectors and with and produces an equiv-
alent connector.

We show in Fig. 5 the composition of two connectors and
. It consists in “glueing” them together on the exported port
. For the composite connector, the update functions are, re-

spectively, the bottom-up composition of the upward update
functions, and the top-down composition of the downward up-
date functions. This implements a general two-phase protocol
for executing hierarchical connectors. First, data is synthesized
in a bottom up fashion by executing upward update functions, as
long as guards are true. Second, data is propagated downwards
through downward update functions, from the top to the support
set of the connector.

Definition 11 (Connector Glueing): Given connectors
and

such that we define the composition
as a connector , where

• .
• .
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Fig. 6. Connector glueing for Example 2.

Fig. 7. Connector flattening for Example 2.

• is defined as follows:
— ;
— ;
—

.
Let us introduce some notations. Let

a set of connectors, and let
the set of all used ports. We call a port

transient in if it is both exported by some connector
from and used by another connector from . Obviously,
transient ports can be eliminated through connector glueing.

For a transient port exported by a connector , we will
use the notation to denote the new set of connectors
obtained by replacing thoroughly by its exporting connector

, formally:
. That is, all connectors

(except ) without in their support set are kept unchanged,
while the others are transformed according to Definition 11.

Definition 12 (Connector Flattening): Connector flattening
is defined by the following function:

if is a set of flat connectors
if is not a set of flat
connectors, is a transient
port of .

Proposition 2: Connector flattening is well-defined, i.e.,
produces a unique result for any set of connectors, and termi-
nates in a finite number of steps.

Proof: Regarding unicity of the result, if and are two
transient ports of defined, respectively, by connectors and

, then flattening in any order gives the same result, formally
.

To show this result it is sufficient to show that any connector
of , different from and gets transformed in the same

way, independently of the order of application of the two trans-
formations. This can be shown, case by case, depending on the
occurrence of ports and in the supports of , , and
following Definition 11.

Regarding termination, flattening of connectors is applicable
as long as there are transient ports. Moreover, it can be shown
that, every flattening step reduces the number of transient ports
by one—the one that is replaced by its definition. Hence, flat-
tening eventually terminates when no more transient ports exist,
that is, is a set of flat connectors.

By application of the transformation to Ex-
ample 2 in Fig. 4(b), we obtain the new composite component
given in Fig. 6. If we apply successively,

, we obtain the new composite component
given in Fig. 7.

In a similar way to component flattening, this second transfor-
mation does not increase the structural complexity of the trans-
formed components. The set of atomic components is preserved
as such, whereas, the overall set of connectors is decreasing.
However, the remaining connectors have an increased computa-
tional complexity, because they integrate the guards and the data
transfer of the eliminated ones. The operational semantics is also
preserved. The effect of the eliminated connectors is “in-lined”
in the remaining ones according to Definition 6.

C. Component Composition

We present the third transformation which allows to obtain
a single atomic component from a set of atomic components
and a set of flat connectors. This transformation defines the
composition of behaviors. Intuitively, as shown in Fig. 8(a), the
composition operation consists in “glueing” together transitions
from atomic components that are synchronized through the in-
teraction of some connector (interaction for this example).
Guards of synchronized transitions are obtained by conjuncting
individual guards and the guard of the connector. Similarly, ac-
tions of synchronized transitions are obtained as the sequen-
tial composition of the upward update function followed by the
downward update function of the connector, followed by the ac-
tions of the components in an arbitrary order.

Definition 13 (Component Composition): Consider a
component such that
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Fig. 8. (a) Component composition. (b) Component composition for Example 2.

is an atomic component and is a set of flat connec-
tors. We define the composition as component

defined as follows:
• the set of ports ;
• the set of control locations ;
• the set of variables ;
• each transition in corresponds to a set of interacting

transitions such that
. We define the transition ,

where
— ;
— ;
— the guard ;
— the action with

.
Fig. 8(b) shows the Petri net obtained by composition of
the atomic components of Fig. 7 through the interaction

.
In contrast to previous transformations, component composi-

tion may lead to an exponential blowup of the number of transi-
tions in the resulting Petri net. This situation may happen if the
same interaction can be realized by combining different transi-
tions from each one of the involved components. For instance,
the interaction can give rise to four transitions in the re-
sulting Petri net if there are two transitions labeled by and

in the synchronizing components. Nevertheless, in practice,
exponential explosion seldom occurs, as in atomic components
each port labels at most one transition (as in the examples shown
hereafter). In this case, the resulting Petri net has as many tran-
sitions as connectors in .

IV. EXPERIMENTAL RESULTS

A. The BIP2BIP Tool

These transformations have been implemented in the
BIP2BIP tool, which is currently integrated in the BIP toolset
[8], as shown in Fig. 9(a).

The frontend of the BIP toolset is a parser that generates
a model from a system described in the BIP language. The
BIP language allows the description of hierarchically structured
components as described in the previous sections. Functions
and data are written in C. The language supports description

of atomic components as extended Petri nets. It also allows the
description of composite components by using connectors.

From the generated model, the code-generator generates C++
code, executable on a dedicated middleware, the BIP Engine.
The BIP Engine can orchestrate execution of the generated code
as well as enumerative state-space exploration. The generated
state graphs can be analyzed by using model-checking tools.
The BIP2BIP tool is written in Java . It allows
transformation of parsed models. It contains the following mod-
ules implementing the presented transformations.

• Component flattening: This module transforms a composite
component into an equivalent one consisting only of atomic
components of the initial model and a set of connectors.

• Connector flattening: This module transforms an hierarchi-
cally structured connector into an equivalent flat one.

• Component composition: This module transforms a set of
atomic components and a set of flat connectors into an
equivalent atomic component.

By exhaustive application of these transformations, an atomic
component can be obtained. From the latter, the code-generator
can generate standalone C++ code, which can be run directly
without the Engine. In particular, all the remaining nondeter-
minism in the final atomic component is eliminated at code gen-
eration by applying an implicit priority between transitions.

It should be noted that the transformations also can be applied
independently, to obtain models that respond to a particular user
needs.Forexample,onemaydecide toeliminateonlypartially the
hierarchy of components, or to compose only some components.

The performance of BIP2BIP is quite satisfactory. For ex-
ample, when applied to an artificially complex BIP model, con-
sisting of 256 atomic components, composed by using 509 con-
nectors with 7 levels of hierarchy, it takes less than 15 s to gen-
erate the corresponding program.

B. Examples of Transformation

For two examples, we compare the execution times of BIP
programs before and after flattening. These examples show that
it is possible to generate efficient standalone C++ code from
component-based descriptions in BIP.

1) MPEG Video Encoder: In the framework of an indus-
trial project, we have componentized in BIP an MPEG4 encoder
written in C by an industrial partner. The aim of this work was
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Fig. 9. (a) BIP toolset: General architecture. (b) MPEG4 encoder.

Fig. 10. (a) Execution time for the MPEG4 encoder. (b) Code size in loc for MPEG4 encoder.

to evaluate gains in scheduling and quality control of the com-
ponentized program. The results were quite positive regarding
quality control [11] but the componentized program was almost
two times slower than the handwritten C program. We have used
BIP2BIP to generate automatically standalone C++ code from
the BIP program as explained below [see Fig. 9(b)].

The BIP program consists of 11 atomic components, and
14 connectors. It uses the data and the functions of the ini-
tial handwritten C program. It is composed of two atomic
components and one composite component. The atomic com-
ponent GrabFrame gets a frame and produces macroblocks
(each frame is split into N macroblocks of 256 pixels). The

atomic component OutputFrame produces an encoded frame.
The composite component Encode consists of nine atomic
components and the corresponding connectors. It encodes
macroblocks produced by the component GrabFrame.

Fig. 10(a) shows execution times for the initial handwritten
C code, for the BIP program and the corresponding standalone
C++ code generated automatically by using the presented tech-
nique. Notice that the automatically generated C++ code and the
handwritten C code have almost the same execution times. The
advantages from the componentization of the handwritten code
are multiple. The BIP program has been rescheduled as shown
in [11] so as to meet given timing requirements.
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Fig. 11. (a) Concurrent sorting � � �. (b) Concurrent sorting � � �.

Fig. 12. (a) Execution time for concurrent sorting. (b) Code size in loc for concurrent sorting.

Fig. 10(b) gives the size of the handwritten C code, the BIP
model, as well of the generated C++ code from the BIP model

and the generated C++ code from the BIP model after flat-
tening . The time taken by the BIP2BIP tool to generate
automatically is less than 1 s.

2) Concurrent Sorting: This example is inspired from a net-
work sorting algorithm [1]. We consider atomic components,
each of them containing an array of values. We want to sort
all the values, so that the elements of the first component are
smaller than those of the second component and so on. We solve
the problem by using incremental hierarchical composition of
components with particular connectors.

In Fig. 11(a), we give a model for sorting the elements of 4
atomic components. The components and are identical.
The pair is composed by using two connectors and

to form the composite component . Each atomic compo-
nent computes the minimum and the maximum of the values in
its array. These values are then exported on port . The con-
nector is used to compare the maximum value of with the

minimum value of , and to permute them if the maximum is
bigger than the minimum value.

When the maximum value of is smaller than the minimum
value of , that is the components are correctly sorted, then
the second connector is triggered. It is used to export the
minimum value of and the maximum value of to the
upper level. At this level, the same principle is applied to sort
the values of the composite components and . This pat-
tern can be repeated to obtain arbitrary higher hierarchies [see
Fig. 11(b)].

Fig. 12(a) shows the execution times for the hierarchically
structured BIP program and for the corresponding standalone
C++ code generated automatically by using the presented
technique. Notice the exponentially increasing difference be-
tween the execution time of the component-based BIP program
and the corresponding C++ code. In particular, component
flattening and connector flattening do not provide much better
performance, because the hierarchical structure is actually
exploited by the BIP engine to compute enabled interactions



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

in an efficient manner. However, these transformations are
mandatory for applying the static composition. Notice that the
overhead is due to many reasons when using the BIP engine.
First, each atomic components sends to the engine its current
state and the list of enabled ports. Second, the engine enumer-
ates on the list of interactions in the model, identifies all enabled
ones based on the current state of the atomic components, then
among them it selects one for execution and, finally, notifies
atoms to take the corresponding transition. This overhead is
partially eliminated in the standalone C++ code generated
automatically. Indeed, the call function between components
and the engine is omitted. The time needed to select an enabled
interaction is drastically reduced. Moreover, control and code
optimization such as guard combination, removal of unneces-
sary assignments, etc., are applied.

Fig. 12(b) shows the size in lines of code of the BIP model, as
well of the generated C++ generated from the BIP model C++
and the generated C++ code from the BIP model after flattening

, for 4, 8, 16, 3, 2 and 64 atomic components. The size of
the BIP model changes only linearly with . However, we notice
that for this example, the size of the generated C++ code from the
BIP model is much smaller than the generated C++ code from
the BIP model after flattening. This is due to the use of com-
ponent types and component types instantiation. In particular,
for this example, the initial BIP model contains just one com-
ponent type instantiated, respectively, 4, 8, 16, 32, 64 times for

. However, the BIP model after flattening, con-
tains one component type with one instance each. The size of the
generated code is directly dependent on the number of compo-
nent types and not on the number of component types instance.

V. CONCLUSION

The paper shows that it is possible to reconcile component-
based incremental design and efficient code generation by ap-
plying a paradigm based on the combined use of: 1) a high-level
modeling notation based on well-defined operational semantics
and supporting powerful mechanisms for expressing structured
coordination between components and 2) semantics-preserving
source-to-source transformations that progressively transform
architectural constraints between components into internal com-
putation of product components.

BIP has already successfully been used for the componenti-
zation of non trivial systems such as the controller of the DALA
robot [5]. This allowed building component-based models for
which enhanced analysis and verification is possible by using
tools such as D-Finder [7] for compositional verification. The
use of the BIP2BIP tool allows to reduce overheads in execution
time by reducing modularity introduced by the designer when it
is not necessary at implementation level.

This paradigm opens the way to the synthesis of efficient
monolithic software which is correct-by-construction by using
the design methodology supported by BIP. The methodology is
currently under study, and involves the following steps.

1) The system (software) to be designed is decomposed into
components. The decomposition can be represented as a
tree which shows how the system can be obtained as the
incremental composition of components. Its root is the
system and its leaves correspond to atomic components.

2) Description of the behavior of the atomic components.
3) Description of composite components as the composi-

tion of atomic components by using only connectors and
priorities.

This is possible because BIP is expressive enough for de-
scribing any kind of coordination by using only architectural
constraints [10].

Along steps 2) and 3) it is possible by using the D-Finder
tool, to generate and/or check invariants of the components and
validate their properties. The methodology provides sufficient
conditions for preserving the already established properties of
the subsystems along the construction.

The BIP2BIP tool is an essential feature of the BIP toolset.
Further developments will focus on source-to-source transfor-
mations for BIP programs with priorities by following a similar
flattening principle. In fact, priority rules can be compiled in
the form of restrictions of the guards of components. We plan
to use BIP2BIP, for optimizing distributed implementations [3],
in particular, to generate monolithic C code for subsystems im-
plemented on the same site.
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