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Abstract. Priorities are used to control the execution of systems to
meet given requirements for optimal use of resources, e.g., by using
scheduling policies. For distributed systems, it is hard to find efficient
implementations for priorities; because they express constraints on global
states, their implementation may incur considerable overhead.
Our method is based on performing model checking for knowledge prop-
erties. It allows identifying where the local information of a process is
sufficient to schedule the execution of a high priority transition. As a
result of the model checking, the program is transformed to react upon
the knowledge it has at each point. The transformed version has no pri-
orities, and uses the gathered information and its knowledge to limit the
enabledness of transitions so that it matches or approximates the original
specification of priorities.

1 Introduction

Executing transitions according to a priority policy is complicated when each
process has a limited view of the situation of the rest of the system. Such limited
local information can be described as the knowledge that processes have at each
point of the execution [3, 4]. Separating the design of the system into a transition
system and a set of priorities can be a very powerful tool [6], yet quite challenging
to implement [1]. Our solution for implementing priorities is based on model
checking [2, 10] of knowledge properties [9]. This analysis checks which processes
possess knowledge about having a maximal priority transition enabled at the
current state.

The information gathered during the model checking stage is used as a basis
for a program transformation. It produces a new program without priorities,
which implements or at least approximates the prioritized behaviors of the old
program. At runtime, processes consult some table, constructed based upon the
apriory model checking analysis, that tells them, depending on the current local
information, whether a current enabled transition has a maximal priority and
thus can be immediately executed. This transformation only blocks some of the
transitions, based on the precalculated table. Thus, it does not introduce any
new executions or deadlocks, and consequently preserves all the linear temporal
logic properties [8] of the system.
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For states where no process can locally know about having a maximal priority
transition, we suggest several options. One solution is to put some semi-global
observers that can observe the combined situation of several processes, obtain-
ing in this way more knowledge regarding which process has a transition with
maximal priority. Another possibility is to relax the priority policy, and allow a
good approximation. The priorities discussed in this paper are inspired by the
BIP system (Behavior Interaction Priority) [6].

2 Preliminaries

The model used in this paper is Petri Nets. This model has a visual representation
that is helpful in presenting our examples. In addition, this model is very close
to the BIP model. The method and algorithms developed here can equally apply
to other models, e.g., transition systems, communicating automata, etc.

Definition 1. A Petri Net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The states are defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T ) ∪ (T × P ) is a bipartite relation between the places and the

transitions.
– s0 ⊆ P is the initial state (hence s0 ∈ S).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈
E}, and output places t• as {p ∈ P |(t, p) ∈ E}.
Definition 2. A transition t is enabled in a state s if •t ⊆ s and t•∩ s = ∅.
A state s is in deadlock if there is no enabled transition from it. We denote the
fact that t is enabled from s by s[t〉.
Definition 3. A transition t can be fired (or executed) from state s to state s′,
which is denoted by s[t〉s′, when t is enabled at s. Then, s′ = (s\•t)∪t•. We extend
this notation to s[t1t2 . . . tk〉s′, when there is a sequence s[t1〉s1[t2〉s2 . . . sk−1[tk〉s′,
i.e., the system moves from s to s′ by firing the sequence of transitions t1t2 . . . tk.

Definition 4. Two transitions t1 and t2 are independent if (•t1 ∪ t1•) ∩ (•t2 ∪
t2•) = ∅. Let I ⊂ T × T be the independence relation. Two transitions are
dependent if they are not independent.

Visually, transitions are represented as lines, places as circles, and the relation
E is represented using arrows. In Figure 1, there are places p1, p2, . . . , p7 and
transitions t1, t2, t3, t4. We depict a state by putting full circles, called tokens,
inside the places of that state. In the example in Figure 1, the initial state s0

is {p1, p2, p7}. If we fire transition t1 from the initial state, the tokens from p1

and p7 will be removed, and a token will be placed in p3. The transitions that
are enabled from the initial state are t1 and t2. In the Petri Net in Figure 1, all
the transitions are dependent on each other, since they all involve the place p7.
Removing p7, as in Figure 2, makes both t1 and t3 become independent on both
t2 and t4.



Definition 5. An execution is a maximal (i.e. it cannot be extended) alternating
sequence of states s0t1s1t2s2 . . . with s0 the initial state of the Petri Net, such
that for each states si in the sequence, si[ti+1〉si+1.

We denote the executions of a Petri Net N by exec(N). A state is reachable in a
Petri Net if it appears on at least one of its executions. We denote the reachable
states of a Petri Net N by reach(N).

We use places also as state predicates and denote s |= pi iff pi ∈ s. This is
extended to Boolean combinations on such predicates in a standard way. For a
state s, we denote by ϕs the formula that is a conjunction of the places that are
in s and the negated places that are not in s. Thus, ϕs is satisfied exactly by
the state s and no other state. For the Petri Net in Figure 1 we have that the
initial state s satisfies ϕs = p1 ∧ p2 ∧ ¬p3 ∧ ¬p4 ∧ ¬p5 ∧ ¬p6 ∧ p7. For a set of
states Q ⊆ S, we can write a characterizing formula ϕQ =

∨
s∈Q ϕs or use any

equivalent propositional formula. We say that a predicate ϕ is an invariant of a
Petri Net N if s |= ϕ for each s ∈ reach(N). As usual in logic, when a formula
ϕQ characterizes a set of states Q and a formula ϕQ′ characterizes a set of states
Q′, then Q ⊆ Q′ if and only if ϕQ → ϕQ′ .

Definition 6. A process of a Petri Net N is a subset of the transitions π ⊆ T
satisfying that for each t1, t2 ∈ π, such that (t1, t2) ∈ I, there is no reachable
state s in which both t1 and t2 are enabled.

We will sometimes denote the separation of transitions of a Petri Net in a figure
to different processes using dotted lines. We assume a given set of processes
S that covers all the transitions of the net, i.e.,

⋃
π∈S π = T . A transition

can belong to several processes, e.g., when it models a synchronization between
processes. Let proc(t) be the set of processes to which t belongs, i.e., proc(t) =
{π|t ∈ π}. Note that there can be multiple ways to define a set of processes for
the same Petri Net.

Definition 7. The neighborhood ngb(π) of a process π is the set of places⋃
t∈π(•t ∪ t•). For a set of processes Π ⊆ S, ngb(Π) =

⋃
π∈Π ngb(π).

In the rest of this paper, when a formula refers to a set of processes Π, we
will often replace writing the singleton process set {π} by writing π instead.
For the Petri Net in Figure 1, there are two executions: acbd and bdac. There
are two processes: the left process πl = {a, c} and the right process πr = {b, d}.
The neighborhood of process πl is {p1, p3, p5, p7}. The place p7, belonging to the
neighborhood of both processes, acts as a semaphore. It can be captured by the
execution of a or of b, guaranteeing that ¬(p3∧p4) is an invariant of the system.

Definition 8. A Petri Net with priorities is a pair (N,+), where N is a Petri
Net and + is a partial order relation among the transitions T of N .

Definition 9. A transition t has a maximal priority in a state s if s[t〉 and,
furthermore, there is no transition r with s[r〉 such that t + r.
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Fig. 1. A Petri Net

Definition 10. An execution of a Petri Net with priorities is a maximal alter-
nating sequence of states and transitions s0t1s1t2s2t3 . . . with s0 the initial state
of the Petri Net. Furthermore, for each state si in the sequence it holds that
si[ti+1〉si+1 for ti+1 having maximal priority in si.

To emphasize that the executions take into account the priorities, we sometimes
call them prioritized executions. We denote the executions of a Prioritized Petri
Net (N,+) by priorE (N,+). The set of states that appear on priorE (N,+)
will be denoted by reach(N,+). The following is a direct consequence of the
definitions:

Lemma 1. reach(N,+) ⊆ reach(N) and priorE (N,+) ⊆ exec(N).
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Fig. 2. A Petri Net with Priorities a ! d, b ! c.

The executions of the Petri Net M in Figure 2, when the priorities a + d and
b + c are not taken into account, include abcd, acbd, bacd, badc, etc. However,



when taking the priorities into account, the prioritized executions of M are the
same as the executions of the Net N in Figure 1.

Unfortunately, enforcing prioritized executions in a completely distributed
way may incur high synchronization overhead [1] or even be impossible. In Fig-
ure 2, a and c belong to one (left) process πl, and b and d belong to another
(right) process πr, with no interaction between the processes. Then, the left pro-
cess πl, upon having a token in p1, cannot locally decide whether to execute a;
the priorities dictate that a can be executed if d is not enabled, since a has a
lower priority than d. But this information is not be locally available to the left
process, which cannot distinguish between the cases where the right process has
a token in p2, p4 or p6.

Definition 11. The local information of a set of processes Π of a Petri Net N
in a state s is s|Π = s ∩ nbg(Π).

That is, the local information of Π at a given state consists of the restriction
of the state to the neighborhood of the transitions of Π. The local information
of a process π in a state s plays the role of a local state of π in s. We prefer to
use the term “local information” since neighborhoods of different processes may
overlap on some common places rather than partitioning the global states. In
the Petri Net in Figure 1, the local information of the left process in any state
s consists of restriction of s to the places {p1, p3, p5, p7}. In the depicted initial
state, the local information is {p1, p7}.

Our definition of local information is only one among possible definitions that
can be used for modeling the part of the state that the system is aware of at
any given moment. Consider again the Petri Net in Figure 1. The places p1, p3

and p5 may represent the location counter in the left process. When there is a
token in p1 or p3, it is reasonable to assume that the existence of a token in place
p7 (the semaphore) is known to the left process. However, it is implementation
dependent whether the left process is aware of the value of the semaphore when
the token is at place p5 or not. This is because at this point, the semaphore may
affect the enabledness of the right process (if it has a token in p2) but would
not have an effect on the left process. Thus, a subtly different definition (and
corresponding implementation) of local information can be used instead. For
simplicity, we will continue with the simpler definition above.

Definition 12. Let Π ⊆ S be a set of processes. Define an equivalence relation
≡Π⊆ reach(N) × reach(N) such that s ≡Π s′ when s|π = s′|π for each π ∈ Π.

It is easy to see that the enabledness of a transition depends only on the local
information of a process that contains it, as stated in the following lemma.

Lemma 2. If t ∈ π and s ≡π s′ then s[t〉 if and only if s′[t〉.

We cannot always make a local decision, based on the local information
of processes (and sometimes sets of processes), that would guarantee only the
prioritized executions in a Prioritized Petri Net (N,+). It is possible that there
are two states s, s′ ∈ reach(N) such that s ≡π s′, a transition t ∈ π is an enabled



transition in s with maximal priority, but in s′ this transition is not maximal
among the enabled transitions. This can be demonstrated on the Prioritized
Petri Net in Figure 2. There, we have that for πl, {p1, p2} ≡πl {p1, p4}. In the
state {p1, p2}, a is a maximal priority enabled transition, while in {p1, p4}, a
is not anymore maximal, as we have that a + d, and both a and d are now
enabled.

In the following we will use predicates, with propositions that are the place
of the Petri Net, to explain the approach and the implementation:

All the reachable states: ϕreach(N).
The states where transition t is enabled: ϕen(t).
At least one transition is enabled, i.e., there is no deadlock: ϕdf =

∨
t∈T ϕen(t).

The transition t has a maximal priority among all the enabled transitions of
the system: ϕmax(t) = ϕen(t) ∧

∧
t$r ¬ϕen(r).

The local information of processes Π at state s: ϕs|Π .

The corresponding sets of states can be easily computed by model checking and
stored in a compact way, e.g., using BDDs.

3 Knowledge Based Approach for Priority Scheduling

The problem we want to solve is the following: given a Petri Net with prior-
ities (N,+), we want to obtain a Petri Net N ′ without priorities, such that
exec(N ′) ⊆ priorE (N,+). Moreover, reach(N ′) must not introduce new dead-
lock states that are not in reach(N,+).

In control theory, the transformation that takes a system and allows blocking
some transitions adds a supervisor process [11], which is usually an automaton
that runs synchronously with the controlled system. This (finite state) automa-
ton observes the controlled system, progresses according to the transitions it
observes, and blocks some of the enabled transitions, depending on its current
state. Some of the transitions may be defined as uncontrollable, meaning that the
controller cannot block them. Of course, the definition of uncontrollable tran-
sitions must be consistent with the priorities; if a transition is uncontrollable
and is enabled in some state together with a higher priority transition, then no
correct controller can be constructed. A distributed controller sets up such a
supervisor per each process. In a conjunctive supervisor [15], in order to execute
an enabled transition t that belongs to several processes, all the corresponding
supervisors must agree to fire it. In a disjunctive supervisor, it is sufficient that
at least one of the supervisors allows (supports) t

Instead of constructing supervisors, one per processfor single or sets of pro-
cesses, we transform the processes, represented as sets of transitions in a Petri
Net. For simplicity of the transformation, we allow Extended Petri Nets, where
processes may have local variables, and each transition has an enabling condition
and a transformation.



Definition 13. An Extended Petri Net has, in addition to the Petri Net com-
ponents, also finite variables Vπ for each process π ∈ Π. The enabling condition
of each transition t is augmented to include also a predicate ent on the vari-
ables Vt = ∪π∈proc(t)Vπ. In order for t to fire, ent must hold in addition to the
usual Petri Net enabling condition on the input and output places of t. When t
is executed, in addition to the usual changes to the tokens, the variables Vt are
updated according to the transformation ft that is also associated with t.

As we saw in the previous section, we may not be able to decide, based on
the local information of a process or a set of processes, whether some enabled
transition is maximal with respect to priority. We can exploit some model check-
ing based analysis to identify the cases where such local control decisions can
be made. Our approach for a local or semi-local decision on firing transitions
is based on the knowledge of processes [3], or of sets of processes. Basically, the
knowledge of a process at a given state is the possible combination of reachable
states that are consistent with the local information of that process.

Definition 14. The processes Π (jointly) know a (Boolean) property ψ in a
state s, denoted s |= KΠψ, exactly when for each s′ such that s ≡Π s′, we have
that s′ |= ψ.

At the moment, the definition of knowledge assumes that the processes do not
maintain a log with their history. We henceforth use knowledge formulas com-
bined with using Boolean operators and propositions. For a detailed syntactic
and semantic description one can refer, e.g., to [3]. In this paper We neither
define nor use the nesting of knowledge operators, e.g., KΠ1(KΠ2(ϕ)), nor the
notion of “common” knowledge CΠϕ.

The following lemmas follow immediate from the definitions:

Lemma 3. If s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ.

Lemma 4. The processes Π know ψ at state s exactly when (ϕreach(N)∧ϕs|Π ) →
ψ is a propositional tautology.

Now, given a Petri Net with priorities, one can perform model checking in order
to calculate whether s |= Kπψ. Note that implementing Lemma 4, say with
BDDs, is not the most space efficient way of checking knowledge properties,
since ϕreach(N) can be exponentially big in the size of the description of the
Petri Net. In a (polynomial) space efficient check, we enumerate all the states s′

such that s ≡π s′, check reachability of s′ using binary search and, if reachable,
check whether s′ |= ψ.

4 The Supporting Process Policy

The supporting process policy, described below, transforms a Prioritized Petri Net
(N,+) into a priorityless Extended Petri Net N ′ that implements or at least
approximates the priorities of the original net. This transformation augments the



states with additional information, and adds conditions for firing the transitions.
This is related to the problem of supervisory control [11], where a supervisor is
imposed on a system, restricting transitions from being fired at some of the
states. We can map the states of the transformed version N ′ into the states
of the original version N by projecting out additional variables that N ′ may
have. In this way, we will be able to related the sets of states of the original and
transformed version.

The supporting process policy can be classified as having a disjunctive archi-
tecture for decentralized control [15]. Although the details of the transformation
are not given here, they should be clear from the theoretical explanation.

At a state s, a transition t is supported by a process π containing t only
if π knows in s about t having a maximal priority (among all the
currently enabled transitions of the system), i.e., s |= Kπϕmax(t);
a transition can be fired (is enabled) in a state only if, in addition
to its original enabledness condition, at least one of the processes
containing it supports it.

Based on the definition of knowledge, we have the following monotonicity
property of knowledge:

Theorem 1. Given that s |= KΠϕ in the original program N , (when not taking
the priorities into account) then s |= KΠϕ also in the transformed version N ′.

This property is important to ensure the maximality of the priority of a tran-
sition after the transformation. The knowledge about maximality will be calcu-
lated before the transformation, and will be used to control the execution of the
transitions. Then, we can conclude that the maximality remains also after the
transformation.

We consider three levels of knowledge of processes related to having a maxi-
mal enabled transition:

ϕ1 Each process knows about all of its enabled transitions that have maximal
priorities (among all enabled transitions).
That is, ϕ1 =

∧
π∈S

∧
t∈π(ϕmax(t) → Kπϕmax(t)).

ϕ2 For each process π, when one of its transitions has a maximal priority, the
process knows about at least one such transition.
ϕ2 =

∧
π∈S((

∨
t∈π ϕmax(t)) → (

∨
t∈π Kπϕmax(t))).

Note that when all the transitions of each process π are totally ordered, then
ϕ1 = ϕ2.

ϕ3 For each state where the system is not in a deadlock, at least one process
can identify one of its transitions that has maximal priority.
ϕ3 = ϕdf → (

∨
π∈S

∨
t∈π Kπϕmax(t)).

We Denote the fact that ϕ is an invariant (i.e., holds in every reachable state)
by using the usual temporal logic notation !ϕ (see [8]). Notice that ϕ1 → ϕ2

and ϕ2 → ϕ3 hold, hence also !ϕ1 → !ϕ2 and !ϕ2 → !ϕ3. Processes have less
knowledge according to ϕ2 than according to ϕ1, and then even less knowledge
if only ϕ3 holds.



Definition 15. Let priorS (N, ϕi) be the set of executions when transitions are
fired according to the supporting process policy when !ϕi holds.

That is, when !ϕ1 holds, the processes support all of their maximal enabled
transitions. When !ϕ2 holds, the processes support at least one of their maximal
enabled transitions, but not necessarily all of them. When !ϕ3 holds, at least one
enabled transition will be supported by some process, at each state, preventing
deadlocks that did not exist in the prioritized net.

Lemma 5. priorS (N, ϕ1) = priorE (N,+). Furthermore, for i = 2 or i = 3,
priorS (N, ϕi) ⊆ priorE (N,+).

This is because when !ϕ2 or !ϕ3 hold, but !ϕ1 does not hold, then some
maximally enabled transitions are supported, but some others may not. On the
other hand, if !ϕ1 holds, the supporting process policy does not limit the firing
of maximal enabled transitions.

Implementing the local support policy: the support table

We first create a support table as follows: We check for each process π, reachable
state s ∈ reach(N) and transition t ∈ π, whether s |= Kπϕmax(t). If it holds, we
put in the support table at the entry s|π the transitions t that are responsible for
satisfying this property. In fact, according to Lemma 3, it is sufficient to check
this for a single representative state containing s|π out of each equivalence class
of ‘≡π’.

Let ϕsupport(π) denote the disjunction of the formulas ϕs|π such that the entry
s|π is nonempty in the support table. It is easy to see from the definition of ϕ3

that checking !ϕ3 is equivalent to checking the validity of the following Boolean
implication:

ϕdf →
∨

π∈S
ϕsupport(π) (1)

This means that at every reachable and non deadlock state, at least one process
knows (and hence supports) at least one of its maximal enabled transitions.

Now, if at least !ϕ3 holds, the support table we constructed for checking
it can be consulted by the transformed program for implementing the support-
ing process policy. Each process π is equipped with the entries of this table of
the form s|π for reachable s. Before making a transition, a process π consults
the entry s|π that corresponds to its current local information, and supports
only the transitions that appear in that entry. The transformed program can be
represented as an Extended Petri Net. The construction is simple. The size of
the support table is limited to the number of different local informations of the
process and not to the (sometimes exponentially bigger) size of the state space.

Priority approximation

It is typical that there will be many states where ϕ3 does not hold. In the Petri
Net in Figure 3, when s includes p3 but neither p6 nor p7 (which are both in the



neighborhood of πl because of the joint transition c), we do not know whether we
can support e: it has a lower priority than j, and πl does not know whether j is
currently enabled, has terminated, or even if the nondeterministic selection at p6

has picked up transition d, and j is not executing thereafter. Thus, πl does not
support e. For similar reasons, πl does not support f because of the possibility
that transition h, with the higher priority, might be enabled simultaneously.
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b
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Fig. 3. Petri Net with priorities e ! j and f ! h

When !ϕ3 does not hold, one can provide various suboptimal solutions,
which try to approximate the priority selection, meaning that not at all times
the executed transition will be maximal. Consider a nondeadlock state s where
s -|= ϕ3. In this case, the entries s|π are empty for each process π, and thus in
state s, no transition will be supported. Hence none will be fired, resulting in a
deadlock.

A pessimistic approach to fix this situation, without guaranteeing completely
prioritized behavior, is to add to each empty entry s|π at least one of the transi-
tions that are maximal among the enabled transitions of π. Another possibility,
which adds less arbitrary transitions to the support table, but requires more
intensive computation, is based on an iterative approach. Select an empty entry
s|π in the support table where some transition t ∈ π is enabled and is maximal
among the enabled transitions of π. Put t into entry s|π of the support table.
Update the formula (1), by adding the disjunct ϕs|π to ϕsupport(π). Then recheck



Formula (1). Repeat adding transitions to empty entries in the support table
until (1) holds. When it holds, it means that for each reachable state, there is a
supported enabled transition, preventing new deadlocks.

Synchronizing Processes Approach

When Formula (1) does not hold, and thus also !ϕ3, we can combine the knowl-
edge of several processes to make decisions. This can be done by putting a super-
visor that checks the combined local information of multiple processes. We then
arrange a support table based on the joint local information of several processes
s|Π rather than the local information of single processes s|π. This corresponds
to replacing π with Π in the formulas ϕ1, ϕ2 and ϕ3. Such supervisors may
reduce concurrency. However, this is not a problem if the controlled processes
are threads, residing already in the same processor. It is not clear apriory on
which sets of processes we want to put a supervisor in order to make their com-
bined knowledge help in deciding the highest priority transition. Model checking
under different groupings of processes, controlled and observed together, is then
repeated until !ϕ1 (or !ϕ2 or !ϕ3) holds.

Another possibility is the transfer of additional information via messages from
one process to another. This also reduces concurrency and increases overhead.

Using Knowledge with Perfect Recall

Knowledge with perfect recall [9] assumes that a process π may keep its own
local history, i.e., the sequence of local information sequence (sequence of local
states) occurred so far. This may separate different occurrences of the same local
information, when they appear at the end of different local histories. This allows
the processes to decide on supporting a transition even in some cases where it
was not possible under the previous knowledge definition.

Knowledge with perfect recall is defined so that a process knows some property
ϕ at some state s and given some local history σ, if ϕ holds for each execution
when reaching a state with the same local history σ. In our case, since the system
is asynchronous, the processes are not always aware of other processes making
moves, unless these moves can affect their own neighborhood (hence their local
information). Hence the local history includes only moves by transitions that
have some common input or output place with ngb(π).

Definition 16. Let ρ be a sequence of transitions of a Petri Net N and π a
process of N . Then ρ|π is obtained from ρ by erasing the transitions that are
independent of all the transitions in π.

Observe that ρ|π includes exactly the transitions of ρ that change the neighbor-
hood of π, including the transitions of π itself.

Definition 17. Let σ = s1t1s2t2 . . . tnsn+1 be a prefix of an execution of a Petri
Net N and π a process. Then σ|π, the local history of π according to σ, is an
alternating sequence of local informations and transitions li1ti1 li2ti2 . . . lik , where
ti1ti2 . . . tik−1 = t1t2 . . . tn|π and for each index ij we have that gij = sij |π.



Thus, σ|π keeps from σ the transitions that change the neighborhood of σ,
according to their order of appearance, and the local information of π just before
and after each such transition. Since the system is asynchronous, π is not aware of
the occurrence of any number of transitions that do not change its history. Recall
that if a transition t that does not change the neighborhood of π is executed
from state s, resulting in state s′, then s|π = s′|π.

Now we can extend the definition of |= in order to define knowledge with
perfect recall.

Definition 18. If σ is a finite prefix of an execution of a Petri Net N ending
with a state s, then σ |= ϕ exactly when s |= ϕ.

We can also define an equivalence relation between finite prefixes:

Definition 19. Let σ, σ′ be two finite prefixes of a Petri Net N . Then σ ≡π σ′

when σ|π = σ′|π.

This means that π observes the same alternating sequence of transitions and
local information in both σ and σ′. We are ready now to define knowledge with
perfect recall.

Definition 20. Let σ be a finite prefix of a Petri Net N . Then a process π
knows with perfect recall ψ after σ, if for each σ′ such that σ ≡π σ′, σ′ |= ψ.

These definitions can be generalized to sets of processes by replacing π with Π.
The properties ϕ1, ϕ2 and ϕ3 can be checked where the knowledge operators
refer to knowledge with perfect recall.

An algorithm for model checking knowledge with perfect recall was shown
in [9], and our algorithm can be seen as a simplified version of it.

Definition 21. Let indseqπ be the set of finite sequences of transitions that do
not change the neighborhood of π.

Let A = (S, s0, T ) be a finite automaton representing the global states S of a
Petri Net N , including the initial state s0 ∈ S and the transitions T between
them. For each process π, we construct an automaton Aπ representing the set
of states of A where the Petri Net N can be after a given local history.

– The states of Aπ are 2S .
– The initial state Γ0 of Aπ is the set of states {s|∃µ ∈ indseqπ s.t. s0[µ〉s}.

That is, the initial state of this automaton contains all the states obtained
from s0 by executing a finite number of transitions independent of (i.e.,
invisible of) π.

– The transition relation is Γ
t−→ Γ ′ between two states Γ, Γ ′ ∈ 2S and a

transition t ∈ T as follows: Γ ′ = {s′|∃s ∈ Γ ∃µ ∈ indseqπ s.t., s[tµ〉s′}. That
is, a move from Γ to Γ ′ corresponds to the execution of any transition t that
change the neighborhood of π followed by transitions independent of π.



Model checking is possible even though the local histories may be unbounded
because the number of such subsets Γ is bounded, and the successor relation
between such different subsets, upon firing a transition t, as described above, is
fixed.

Instead of the support table, for each process π we have a support automaton,
representing the determinization of the above automaton. At runtime, the exe-
cution of each transition visible by π, i.e., one that can change π’s neighborhood,
will cause a move of this automaton (this means access to the support automa-
ton of π with the execution of these transitions, even when they are not in π).
If currently the state of the support automaton corresponds to a set of states Γ
where in all of them the transition t ∈ π is maximally enabled (checking this for
the states in Γ was precalculated at the time of performing the transformation),
then π currently supports t.

Unfortunately, the size of the support automaton, for each process, can be
exponential in the size of the global state space (corresponding to a subset of the
states where the current execution can be, given the local history). This gives
quite a high overhead to such a transformation. Note that the local histories of
the transformed net is a subset of the local histories of the original, priorityless
net. Thus, Theorem 1 still holds when relativized to knowledge with perfect
recall.

Returning to the example in Figure 3, knowledge with perfect recall can
separate at a state where p3 has the token but neither p6 nor p7 have a token,
the case where a was executed from the case where c was executed. If a was
executed, then πl can safely support e, whose priority is comparable only with
j, which is never enabled. Conversely, if c was executed, process πl can support
f , which is comparable only with h.

5 Discussion

We will now put our knowledge-based approach in the context of supervisor
control synthesis. First, consider the general case where we have a concurrent
system, described as a Petri Net (or a finite state transition system), on top
of which we want to impose some property. The property imposed restricts the
system to a particular set of states, and possibly a set of transitions allowed
from any given state. This kind of restriction covers invariants and priorities, but
not temporal properties. The transitions of the Petri Net are partitioned into
processes, as in Definition 6, and each process can be controlled by a supervisor
with local memory. Such a supervisor can observe the transitions that change
the neighborhood of the process. Indeed, in control theory, such transitions are
said to be observable by π (and the rest are thus unobservable by π). A process
π can control a subset of the transitions that belong to that process. These
are called the controllable transitions of π. A process can decide to support or
not to support an enabled controllable transition. In a conjunctive controller,
a transition must be supported by all the processes that are involved with it,



while in a disjunctive controller, it is enough that at least one of the involved
processes supports an enabled transition in order for it to fire.
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Fig. 4. Net with Priorities e ! h and b ! g

Now consider the Net in Figure 4. According to the knowledge approach,
when the local information of πl includes p1 neither p5 nor p6 (both of these
latter places are in the neighborhood of πl), process πl does not know if g is
enabled or not (the right process can have a token at p7, p8, p9 or p10). So πl

cannot support the transition b. Furthermore, when the left process is in state p3,
we cannot support transition e, since our knowledge does not distinguish between
the case where h is enabled or not. If we use knowledge of perfect recall, then
when we arrive at state p3, we know whether previously a was executed or b. If
a was executed, then it is safe to execute e. But if b happened (and subsequently
c), then executing e may not be safe and adding the perfect recall does not
help. Thus, our knowledge approach does not help us to construct a distributed
supervisor.

Still, abandoning the knowledge approach, one can construct a distributed
supervisor. This is done by having the left process πl deciding to support only
a from any local information with token in p1. In this case, e will follow. In the
right process πr, the interaction c is not possible, hence d will be executed and
thereafter g. In this case, there is no problem with priorities, as e is only ordered
with respect to h. One may argue whether abandoning b in favor of a, both of



which have maximal priority, should be allowed here. But note that the support
process policy, under conditions ϕ2 and ϕ3 may not know enough to support all
the maximal priority transitions.

We have thus shown that the knowledge approach gives us an algorithm
for constructing distributed controllers for priorities that may fail even when
a controller exists. It is shown in [7] that the problem of deciding whether a
distributed controller exists is, in general, an undecidable problem.

Knowledge was suggested as a tool for constructing a distributed supervisor
in [12]. There, knowledge-controllability (termed Kripke observability) is studied
as a basis for constructing a distributed supervisor. The requirement there is
that for each transition, if it is enabled by the controlled system but must be
blocked according to the additional constraint, then at least one process knows
that fact and is thus able to prevent its execution. The construction here is dif-
ferent. We require that at least one process knows that the occurrence of some of
its enabled transitions preserve the correctness of the imposed constraint, hence
supporting its execution. The approach of [12] requires sufficient knowledge to al-
low any enabled transition that preserves the imposed constraint. Our approach
preserves the correctness of the supervisor even when knowledge about other
such transitions is limited, at the expense of restricting the choice of transitions.

6 Conclusions

Developing concurrent systems is an intricate task. One methodology, which lies
behind the BIP system, is to define first the architecture and transitions, and
at a later stage add priorities among the transitions. This methodology allows a
convenient separation of the design effort. We presented in this paper the idea of
using model checking analysis to calculate the local knowledge of the concurrent
processes of the system about currently having a maximal priority transition.
Model checking is used to transform the system into a priorityless version that
implements the priorities. There are different versions of knowledge, related to
the different ways we are allowed to transform the system. For example, the
knowledge of each process, at a given time, may depend on including information
about the history of computation.

After the analysis, we sometimes identify states where no process has enough
information about having a maximal priority transition. In such cases, syn-
chronizing between different processes, reducing the concurrency, is possible;
semiglobal observers can coordinate several processes, obtaining joint knowledge
of several processes. Another possible solution (not further elaborated here) in-
volves adding coordination messages.

More generally, we suggest a programming methodology, based on a basic
design (in this case, the architecture and the transitions) with added constraints
(in this case, priorities). Model checking of knowledge properties is used to lift
these added constraints by means of a program transformation. The resulted
program behaves in an equivalent way, or approximates the behavior of the
basic design with the constraints.
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