
IF: An Intermediate Representation for SDLand its ApplicationsMarius Bozgaa, Jean-Claude Fernandezb, Lucian Ghirvua�, Susanne Grafa, Jean-PierreKrimma, Laurent Mouniera and Joseph SifakisaaVERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eres,e-mail: Marius.Bozga@imag.fr, http://www-verimag.imag.fr/DIST SYS/IFbLSR/IMAG, BP 82, F-38402 Saint Martin d'H�eres Cedex,e-mail: Jean-Claude.Fernandez@imag.frWe present work of a project for the improvement of a speci�cation/validation toolboxintegrating a commercial toolset Objectgeode and di�erent validation tools such as theveri�cation tool cadp and the test sequence generator tgv.The intrinsic complexity of most protocol speci�cations lead us to study combinations oftechniques such as static analysis and abstraction together with classical model-checkingtechniques. Experimentation and validation of our results in this context motivated thedevelopment of an intermediate representation for sdl called if. In if, a system is repre-sented as a set of timed automata communicating asynchronously through a set of bu�ersor by rendez-vous through a set of synchronization gates. The advantage of the use of sucha program level intermediate representation is that it is easier to interface with various ex-isting tools, such as static analysis, abstraction and compositional state space generation.Moreover, it allows to de�ne for sdl di�erent, but mathematically sound, notions of time.Keywords:SDL, Time Semantics, Validation, Model-Checking, Test Generation, Static Analysis.1. INTRODUCTIONsdl and related formalisms such as msc and ttcn are at the base of a technology forthe speci�cation and the validation of telecommunication systems. This technology willbe developing fast due to many reasons, institutional, commercial and economical ones.sdl is promoted by Itu and other international standardization bodies. There exist com-mercially available tools and most importantly, there are increasing needs for descriptionand validation tools covering as many aspects of system development as possible. Theseneeds motivate the work for enhancement of the existing standards undertaken by Ituand Etsi, in particular.Among the work directions for improvement of sdl, an important one is the descriptionof non functional aspects of the behavior, such as performance and timing. Finding a�Work partially supported by R�egion Rhône-Alpes, France

\reasonable" notion of time is a central problem which admits many possible solutionsdepending on choices of semantic models. This is certainly a non trivial question and thisis re
ected by the variety of the existing proposals.Choosing an appropriate timed extension for sdl should take into account not onlytechnical considerations about the semantics of timed systems but also more pragmaticones related to the appropriateness for use in a system engineering context. We believethat the di�erent ideas about extensions of the language must be validated experimentallybefore being adopted to avoid phenomena of rejection by the users. Furthermore, it isimportant to ensure as much as possible compatibility with the existing technology andprovide evidence that the modi�ed standard can be e�ciently supported by tools.Another challenge for the existing technology for sdl to face the demand for descriptionand validation of systems of increasing size, is to provide environments that allow the userto master this complexity. The existing commercial tools are quite satisfactory in severalrespects and this is a recognized advantage of sdl over other formalisms poorly supportedby tools. However, it is necessary to improve the existing technology to avoid failing tokeep up. Mastering complexity requires a set of integrated tools supporting user drivenanalysis. Of course, the existing tools such as simulators, veri�ers, automatic test gener-ators can be improved. Our experience from real case studies shows that another familyof tools is badly needed to break down complexity. All the methods for achieving such agoal are important ranging from the simplest and most \naive" to the most sophisticated.In this paper we present work of a project for the improvement of a speci�cation andvalidation toolbox interconnecting Objectgeode[1] and di�erent validation tools such ascadp[2] developed jointly with the Vasy team of Inria Rhône-Alpes and tgv[3] devel-oped jointly with the Pampa team of Irisa. The project has two complementary workdirections. The �rst is the study and the implementation of timed extensions for sdl; thiswork is carried out in cooperation with Verilog, Sema Group and Cnet within a commonproject. The second is coping with complexity by using a combination of techniques basedon static analysis, abstraction and compositional generation. Achieving these objectivesrequires both theoretical and experimental work. Experimentation and validation of ourresults in this context motivated the development of an intermediate representation forsdl called if. if is based on a simple, and semantically sound model for distributed timedsystems which is asynchronously communicating timed automata (automata with clocks).A translator from a static subset of sdl to if has been developed and if has been con-nected to di�erent tools of our toolbox. The use of such an intermediate representationconfers many advantages.� if to implement and evaluate di�erent semantics of time for sdl as the underlyingmodel of if is general enough to encompass a large variety of notions of urgency,time non determinism and di�erent kinds of real-time constructs.� if allows a
attened description of the corresponding sdl speci�cation with thepossibility of direct manipulation, simpli�cation and generally application of analysisalgorithms which are not easy to perform using commercial tools which, in general,are closed.� if can be considered as a common representation model for other existing languagesor for the combination of languages adopting di�erent description styles.

Related workAfter its standardization in the eighties, a lot of work has been done concerning themathematical foundations of sdl. The �rst complete semantics was given by the annex Fto the recommendation Z.100 [4,5] and is based on a combination of csp [6] andMeta-iv[7]. Even if it is the reference semantics of sdl (about 500 pages), it is far from beingcomplete and contains many inconsistencies and obscure points.In [8] is given a semantics for sdl based on streams and stream processing functions. Itdeals with a subset of sdl and the timing aspects are simpli�ed. An operational semanticswhich covers sdl systems, processes, blocks and channels is given in [9]. It de�nes amethod to build labeled transition systems from sdl speci�cations. The approach isrelatively complete, however in this case too, time is not handled in a satisfactory manner.An important work is done in [10,11] which gives a semantics based on process algebrato a rather simple subset of sdl, called '�sdl. A method is given, for translating eachsdl system into a term of PApscdrt-ID which is a discrete time process algebra extendedwith propositional signals and conditions, counting process creation operator, and a stateoperator. Finally, we mention the work of [12] which proposes an axiomatic semanticsbased on Duration Calculus and the work of [13] which uses abstract real time machines.Our aim is somewhat di�erent from the one of the above mentioned works, as it isnot only to present a sound semantics, especially concerning timing aspects, but also tomake forward a step concerning veri�cation of sdl speci�cations: we give a program levelintermediate representation into which a large subset of sdl and also other speci�cationformalisms can be translated | by preserving its semantics | and which is the inputlanguage of an open veri�cation environment.The paper is organized as follows. In the next section, we present an example usedthroughout the paper to illustrate our work. Then, we describe the main features of theif formalism used as an intermediate representation for sdl. Finally, we present an openvalidation environment for sdl speci�cations and illustrate its usefulness by means ofsome experimental results.2. AN EXAMPLE: A DISTRIBUTED LEADER ELECTION ALGORITHMWe present a simple example used throughout the paper to illustrate the introducedformalisms and veri�cation methods. We consider a token ring, that is a system of nstations S1, : : : , Sn, connected through a circular network, in which a station is allowedto access some shared resource R only when it \owns" a particular message, the token.If the network is unreliable, it is necessary to recover from token loss. This can be doneusing a leader election algorithm [14,15] to designate a station responsible for generatinga new token.Formal speci�cations and veri�cations of these algorithms already exist and we considerhere an sdl version of the one described in [16]. Figure 1 shows the system view of thespeci�cation. The signals open and close denote the access and the release of the sharedresource (here part of the environment). The signals token and claim are the messagescirculating on the ring.All stations Si are identical and modeled by the sdl process of Figure 2. On expiration

block token_4

signal token;

signal claim(address, boolean);

R

R

R

R

link1

token , claim

link2

token , claim

link3

token , claim

link4

token , claim

exit1
open , close

exit4

open , close

exit2

open , close

exit3

open , close

S1 S2

S3S4Figure 1. The token-ring architectureof the timer worried token loss is assumed: this timer is set when the station waits forthe token, and reset when it receives it. The \alternating bit" round is used to distinguishbetween valid claims (emitted during the current election phase) and old ones (cancelledby a token reception). In the idle state, a station may either receive the token from itsneighbor (then it reaches the critical state and can access the resource), receive a timerexpiration signal (then it emits a claim stamped with its address and the current valueof round) or receive a claim. A received claim is \�ltered" if its associated address issmaller than its own address and transmitted unchanged if it is greater. If its own validclaim is received, then this station is elected and generates a new token.
process Si

dcl round, rnd boolean;

dcl adr address;

timer worried;

round:=true

set (1+now,
worried)

idle

idle

token

token

reset (worried)

open

critical

claim (adr,rnd)

adr

< Si

-

= Si

rnd = round

false

-

true

token

> Si

claim (adr,rnd)

-

worried

claim (Si,round)

set (1+now,
worried)

-

critical

none

close

round:=
not round

set (1+now,
worried)

token

idleFigure 2. The behavior of station Si

In the sdl speci�cation, message loss must be modeled explicitly (for instance by in-troducing a non deterministic choice when a token or claim is transmitted by a station).Using the intermediate representation if, message loss can be expressed simpler by meansof lossy bu�ers, for which exist particular veri�cation techniques.3. IF: AN INTERMEDIATE REPRESENTATION FOR SDLIn the following sections, we give a brief overview of the intermediate representation if,its operational semantics in terms of labeled transition systems and the translation of arather extended subset of sdl into if. A more complete description can be found in [17].In particular, we do not present the rendez-vous communication mechanism here.3.1. An overview on IFIn if, a system is a set of processes (state machines as SDL processes) communicating asyn-chronously through a set of bu�ers (which may be lossy/reliable and bounded/unbounded).Each process can send and receive messages to/from any bu�er. The timed behavior of asystem can be controlled through clocks (like in timed automata [18,19]) and timers (sdltimers, which can be set, reset and expire when they reach a value below 0).3.1.1. IF system de�nitionA system is a tuple Sys = (glob-def,procs) where� glob-def= (type-def,sig-def,var-def,buf-def) is a list of global de�nitions, where type-defis a list of type de�nitions, sig-def de�nes a list of parameterized signals (as in sdl),var-def is a list of global variable de�nitions, and �nally, buf-def is a list of bu�ersthrough which the processes communicate by asynchronous signal exchange.� procs de�nes a set of processes described in section 3.1.2.3.1.2. IF process de�nitionProcesses are de�ned by a set of local variables, a set of control states and a set of controltransitions. A process P2procs is a tuple P= (var-def, Q, cTrans), where:� var-def is a list of local variable de�nitions (including timers and clocks)� Q is a set of control states on which the following attributes are de�ned:{ stable(q) and init(q) are boolean attributes, where the attribute stable allowsto control the level of atomicity, which is a useful feature for veri�cation: onlystable states are visible on the semantic level.{ save(q), discard(q) are lists of filters of the formsignal-list in buf if cond.save(q) is used to implement the save statement of sdl; its e�ect is to preserveall signals of the list in buf, whenever the condition cond holds.discard(q) is used to implement the implicit discarding of non consumablesignals of sdl. When reading the next input signal in buf, all signals to bediscarded in buf preceding it are discarded in the same atomic transition.� cTrans is a set of control transitions, consisting of two types of transitions betweentwo control states q,q02Q:

{ input transitions which are triggered by some signal read from one of thecommunication bu�ers as in sdl:q g 7! input ; body�������������!(u) q0{ internal transitions depending not on communications:q g 7! body�������!(u) q0Where in both cases:� g is a predicate representing the guard of the transition which may depend onvariables visible in the process (including timers, clocks and and bu�ers, wherebu�ers are accessed through a set of primitives).� body is a sequence of the following types of atomic actions:{ outputs of the form \output sig(par list) to buf" have as e�ect to appenda signal of the form \sig(par list)" at the end of the bu�er buf.{ usual assignments.{ settings of timers of the form \set timer := exp". This has the e�ect toactivate timer and to set it to the value of exp. An active timer decreaseswith progress of time. sdl timers expire when they reach the value 0, but inif any timer tests are allowed. Clocks are always active and they increase withprogress of time.{ resettings of timers and clocks, which have the e�ect to inactivate timers andto assign the value 0 to clocks.� The attribute u2feager, delayable, lazyg de�nes the urgency type of each tran-sition. eager transitions have absolute priority over progress of time, delayabletransitions may let time progress, but only as long as they remain enabled, whereaslazy transitions cannot prevent progress of time. These urgency types are intro-duced in [20] and lead to a more
exible notion of urgency than in timed automata,where enabled transitions become urgent when an invariant | depending on valuesof timers and ordinary variables | associated with the starting state q becomesfalse. For compatibility with timed automata we allow also the de�nition of anattribute tpc(q) representing such an invariant (de�ning a necessary condition fortime progress). Notice also that{ the concept of urgency de�nes a priority between ordinary transitions and timeprogress which moreover may vary with time. Thus the concept of urgency isorthogonal to the usual concept of priority between ordinary transitions.{ urgency and tpc attributes are only relevant in stable states, as only stable statesare visible at the semantic level, and therefore only in stable states interleavingof transitions (ordinary ones as well as time progress) is possible.� input is of the form \input sig(reference list) from buf if cond" where{ sig is a signal,{ reference list the list of references2 in which received parameters are stored,2that is an \assignable" expression such as a variable or an element of an array

{ buf is the name of the bu�er from which the signal should be read{ cond is a \postguard" de�ning the condition under which the received signalis accepted; cond may depend on received parameters.Intuitively, an input transition is enabled if its guard is true, the �rst signal in buf| that can be consumed according to the save and discard attributes | is of theform sig(v1; :::vn) and the postguard cond holds after assigning to the variables ofthe reference list the corresponding values v1; :::vn.That means that the input primitive is | as in sdl | rather complicated, but ifone wants to translate the sdl input primitive by means of a simpler primitives,one needs to allow access the elements of the bu�er in any order. This means thatthe input bu�er becomes an ordinary array and no speci�c analysis methods can beapplied.3.2. Semantics of IFWe show how with a process can be associated a labeled transition system, and then,how these process models can be composed to obtain a system model.3.2.1. Association of a model with a processLet P= (var-def, Q, cTrans) be a process de�nition in the system Sys and:� Let TIME be a set of environments for timers and clocks (for simplicity of thepresentation, we suppose that these environments are global, that is, applicable toall timers and clocks occurring in Sys). An environment T 2TIME de�nes for eachclock a value in a time domain T (positive integers or reals), and for each timereither a value in T or the value \inac" (represented by a negative value) meaningthat the timer is not active. Setting or resetting a timer or a clock a�ects a valuationT in an obvious manner. Progress of time by an amount � transforms the valuationT into the valuation T � � in which the values of all clocks are increased by �, andthe values of all timers are decreased by � (where the minimal reachable value iszero).� Let BUF be a set of bu�er environments B, representing possible contents of thebu�ers of the system, on which all necessary primitives are de�ned: usual bu�eraccess primitives, such as \get the �rst signal of a given bu�er, taking into accountthe save and the discard attribute of a given control state", \append a signal at theend of a bu�er",... and also \time progress by amount �", denoted by B � �, isnecessary for bu�ers with delay.� Let ENV be a set of environments E de�ning the set of valuations of all othervariables de�ned in the system Sys.The semantics of P is the labeled transition system [P] = (Q�VAL,Trans,Ttrans) where� Q�VAL is the set of states and VAL= ENV�TIME�BUF is the set of data states.� Trans is the set of untimed transitions obtained from control transitions by thefollowing rule: for any (E ,T ,B),(E 0,T 0,B0)2VAL and input transition (and simplerfor an internal transition)

q g 7! (sig(x1:::xn);buf;cond) ; body������������������������!(u) q0 2 cTrans implies(q; (E ; T ;B)) �̀! (q0; (E 0; T 0;B0)) 2 Trans, if{ the guard g evaluates to true in the environment (E ,T ,B){ the �rst element of buf in the environment B| after elimination of appropriatesignals of the discard attribute and saving of the signals of the save attribute |is a signal sig(v1:::vn), and the updated bu�er environment, after consumptionof sig(v1:::vn), is B00{ E 00=E [v1:::vn/x1:::xn] and T 00=T [v1:::vn/x1:::xn] are obtained by assigning toxi the value vi of the received parameters,{ the postguard cond evaluates to true in the environment (E 00,T 00,B00){ E 0 is obtained from E 00 by executing all the assignments of the body,{ T 0 is obtained from T 00 by executing all the settings and resettings occurringin the body, without letting time progress,{ B0 is obtained from B00 by appending all signals required by outputs in thebody,{ ` is an appropriate labeling function used for tracing.� Ttrans is the set of time progress transitions, which are obtained by the followingrule which is consistent with the intuitively introduced notion of urgency: in anystate (q,(E ,T ,B)), time can progress by the amount �, that is(q; (E ; T ;B)) ��! (q; (E ; T � �;B � �)) 2 Ttrans if1. q is stable and2. time can progress in the state (q,(E ,T ,B)), and3. time can progress by steps until �: whenever time has progressed by an amount�0 where 0 � �0 < �, time can still progress in the reached state which is(q,(E ,T � �0,B � �0)).Time can progress in state (q,(E ,T ,B)) if and only if the following conditions hold:{ the time progress attribute tpc(q) holds in (E ,T ,B){ no transition with urgency attribute eager is enabled in (q,(E ,T ,B)){ for each delayable transition tr enabled in (q,(E ,T ,B)), there exists a positiveamount of time �, such that tr cannot be disabled while time progresses by �.3.2.2. Composition of modelsThe semantics of a system Sys = (glob-def,procs) is obtained by composing the modelsof processes by means of an associative and commutative parallel operator k.Let [Pi] = (Qi�VAL,Transi,Ttransi) be the models associated with processes (or sub-systems) of Sys. Then, [P1] k [P2] = (Q�VAL,Trans,Ttrans) where� Q= Q1�Q2 and � init((q1; q2)) = init(q1) ^ init(q2)stable((q1; q2)) = stable(q1) ^ stable(q2)

� Trans is the smallest set of transitions obtained by the following rule and itssymmetrical rule:(q1;V) �̀! (q01;V 0) 2 Trans1 and :stable(q1) _ stable(q2)((q1; q2);V) �̀! ((q01; q2);V 0) 2 Trans� Ttrans is the smallest set of transitions obtained by the following rule:(q1;V) ��! (q1;V 0) 2 Ttrans1 and (q2;V) ��! (q2;V 0) 2 Ttrans2((q1; q2);V) ��! ((q1; q2);V 0) 2 Ttrans3.3. Translation from SDL to IFWe present the principles of the translation from sdl to if considering the structuraland the behavioral aspects. We do not present the translation of data aspects, and inparticular the object oriented features, as they do not interfere with our framework.3.3.1. Structuresdl provides a complex structuring mechanism using blocks, substructures, processes,services, etc, whereas if systems are
at, that is consisting of a single level of processes,communicating directly through bu�ers. Therefore, a structured sdl system is
attenedby the translation into if. Also, the structured communication mechanism of sdl usingchannels, signal routes, connection points, etc is transformed into point to point com-munication through bu�ers by computing for every output a statically de�ned uniquereceiver process (respectively its associated bu�er).All prede�ned sdl data types, arrays, records and enumerated types can be translated.For abstract data types, only the signatures are translated, and for simulation, the usermust provide an appropriate implementation.In sdl all signals are implicitly parameterized with the pid of the sender process,therefore in if all signals have an additional �rst parameter of type pid.3.3.2. ProcessesBasically, for each instance of an sdl process, we generate an equivalent if processand associate with it a default input queue. If the number of instances can vary in someinterval, the maximal number of instances is created.Variables: Each local variable/timer of an sdl process becomes a local variable/timerof the corresponding if process. We de�ne also variables sender, offspring and parentwhich are implicitly de�ned in sdl. Remote exported/imported variables declared insidean sdl processes become global variables, declared at if system level.States: All sdl states (including start and stop) are translated into stable if controlstates. As if transitions have a simpler structure than sdl transitions, we introduce alsosystematically auxiliary non stable states for each decision and each label (correspondingto a \join") within an sdl transition. For each stable if state we de�ne the save anddiscard sets to be the same as for the corresponding sdl state.

Transitions: For each minimal path between two if control states, an if transition isgenerated. It contains the triggers and actions de�ned on that path in the same order.All the generated transitions are by default eager i.e. they have higher priority thanthe progress of time; this allows to be conform with the notion of time progress of the toolObjectgeode; more liberal notions of time progress can be obtained by using di�erenttranslations from sdl to if (see the example below).� inputs: sdl signal inputs are translated directly into if inputs, where the senderparameter must be handled explicitly: each signal receives the �rst parameter inthe local variable sender.Spontaneous input none is translated by an assignment of the sender to the pid ofthe current process. No input part is generated in this case.� timeouts expirations are not noti�ed via timeout signals in if: each timeout signalconsumption in an sdl process is translated into a transition without input, whichtests if the corresponding timer evaluates to zero, followed by the reset of that timer.The reset is needed to avoid multiple consumption of the same timeout expiration.� priority inputs: are translated into normal inputs by enforcing the guards of all lowpriority inputs and the save set of the source state. The guard of each low priorityinput is conjuncted with a term saying that \there is no higher priority signal in thebu�er". All low priority signals are explicitly saved if \at least one input with higherpriority exists in the bu�er". Such tests can e�ectively be expressed by prede�nedpredicates on bu�ers.� continuous signal: sdl transitions triggered by a continuous signal test, are trans-lated into an if transition without input, whose guard is equivalent to the sdlcontinuous signal.� enabling condition: an enabling condition following an sdl input signal is translateddirectly into a post guarded input where the received parameters can be tested.� task: all sdl formal tasks are translated into if assignments. Informal tasks becomecomments in the if speci�cation.� set and reset: sdl timer sets become if timer sets, where an absolute value \now + T"becomes a relative value \T". sdl timer resets become if timer resets.� output: sdl outputs become if outputs: if the to pid-expression clause is present inthe sdl output, the same pid-expression is taken as destination for the if output.Otherwise, according to signal routes signature, via restrictions, connections, etc. wecompute statically the set of all possible destinations. If this set contains exactlyone process instance, it become the if destination, otherwise, this output is nottranslated (and a warning is produced). Any output contains as �rst parameter thepid of the sending process.� decision: each alternative of an sdl formal decision is translated into a guard start-ing an if-transition from the corresponding non stable state.� create: the dynamic creation of processes is not yet handled. But we will translatethis construction by using the rendez-vous mechanism of if: a new instance iscreated (an \inactive" instance is activated) by synchronizing its �rst action with

the process creating (activating) it. During this synchronization, parameters can bepassed between the \creating" and the \created" process, such as the the values ofthe parent and the offspring variables, etc.� procedures: if does not directly support procedures. But we handle a relatively largeclass of sdl programs containing procedures by procedure inlining, which consistsin directly inserting the procedure graph, instead of its call, in the process graph.Example: translation of the token ring to IFTo illustrate if, we present the translation of the token ring introduced in Section 2.The translation of the structure is completely straightforward in this example. Figure 3contains the if version of the process S1, where the additional non stable states are dotted.
Start

tokenCritical

Idle

output Close(S1) to env

set worried:=1

set worried:= 1
round:=true

output claim(S1,S1,round) to Q2
set worried:=1

output claim(S1,adr,rnd) to Q2

input token(sender)
from Q1

if rnd<>round

if adr=S1

input claim(sender,adr,rnd)
from Q1

output Token(S1) to Q2

round:=not round

reset worried
output Open(S1) to env

if rnd=round

if worried=0

if adr < S1

if adr > S1

Figure 3. The \graphical" if description of station S1By default, all transitions are eager, which leads to the same behavior as in Objectgeode.Thus, time can only progress, and the timeout occur, if the token is really lost (that is,no transition is enabled), and therefore a leader election algorithm is only initiated ifnecessary. In if, a di�erent notion of time, closer to reality, can be modeled, e.g. byconsidering the transition from the critical state as lazy, thus allowing time to passin this state by an arbitrary amount. In order to limit the time a process can remainin the critical state, one can consider this transition as delayable, introduce a clockcl crit which is reset when entering critical and add to the outgoing transition theguard cl crit�some limit.4. AN OPEN VALIDATION ENVIRONMENT BASED ON IFOne of the main motivations for developing if is to provide an intermediate represen-tation between several tools in an \open" validation environment for sdl. Indeed, noneof the existing tools provides all the validation facilities a user may expect. Therefore, wewant to allow them to cooperate, as much as possible using program level connections.An important feature is the ability of the environment to be open: in particular connec-tions with kronos [21] (a model checker for timed automata) and invest [22,23] (a toolcomputing abstractions) are envisaged.

Static
Analysis

Compositional
Generation

Code
Generator

CADP

SDL

Diagnostics

Aldebaran Evaluator

Model

Compiler

Verifier

Simulator
TGV

Test CasesImplementation

Languages

Validation
Tools

Specifications

IF

GEODEObject

Figure 4. An open validation environment for sdlIn this section, we �rst present the architecture of this environment and its main compo-nents. Then, we describe in a more detailed manner two more recent modules concerningstatic analysis (section 4.2) and compositional generation (section 4.3) which are basedon if.4.1. ArchitectureThe environment is based on two validation toolsets, Objectgeode and cadp, connectedthrough the intermediate representation if. There exists already a connection betweenthese toolsets at the simulator level [24], however using if o�ers two main advantages:� The architecture still allows connections with many other speci�cation languages ortools. Thus, even speci�cations combining several formalisms could be translatedinto a single if intermediate code and globally veri�ed.� The use of an intermediate program representation where all the variables, timers,bu�ers and the communication structure are still explicit, allows to apply methodssuch as static analysis, abstraction, compositional generation. These methods arecrucial for the applicability of the model checking algorithms.ObjectGEODEObjectgeode is a toolset developed by Verilog supporting the use of sdl, msc andomt. It includes graphical editors and compilers for each of these formalisms. It alsoprovides a C code generator and a simulator to help the user to interactively debug an sdlspeci�cation. The Objectgeode simulator also o�ers some veri�cation facilities since itallows to perform automatic simulation (either randomly or exhaustively), and behavioralcomparison of the speci�cation with special state machines called observers [25].

CADP and TGVWe have been developing for more than ten years a set of tools dedicated to the designand veri�cation of critical systems. Some of them are distributed in collaboration with theVasy team of Inria Rhône-Alpes as part of the cadp toolset [2,26]. We brie
y presenthere two veri�ers integrated in cadp (aldebaran and evaluator) and the test sequencegenerator tgv [3] built upon cadp jointly with the Pampa project of Irisa. These toolsapply model-checking on behavioral models of the system in the form of labeled transitionsystems (lts). aldebaran allows to compare and to minimize �nite lts with respectto various simulation or bisimulation relations. This allows the comparison between theobservable behavior of a given speci�cation with its expected one, expressed at a moreabstract level. evaluator is a model-checker for temporal logic formulas expressed on�nite lts. The temporal logic considered is the alternating-free �-calculus. tgv aimsto automatically generate test cases for conformance testing of distributed systems. Testcases are computed during the exploration of the model and they are selected by meansof test purposes. Test purposes characterize some abstract properties that the systemshould have and one wants to test. They are formalized in terms of lts, labeled withsome interactions of the speci�cation. Finally, an important feature of cadp is to o�erseveral representations of lts, enumerative and symbolic ones based on bdd, each of thembeing handled using well-de�ned interfaces such as open-caesar [27] and smi [28].SDL2IF and IF2CTo implement the language level connection through the if intermediate representationwe take advantage of a well-de�ned api provided by the Objectgeode compiler. Thisapi o�ers a set of functions and data structures to access the abstract tree generatedfrom an sdl speci�cation. sdl2if uses this abstract tree to generates an if speci�cationoperationally equivalent to the sdl one.if is currently connected to cadp via the implicit model representation feature sup-ported by cadp. if programs are compiled using if2c into a set of C primitives providinga full basis to simulate their execution. An exhaustive simulator built upon these prim-itives is also implemented to obtain the explicit lts representation on which all cadpveri�ers can be applied.4.2. Static analysisThe purpose of static analysis is to provide global informations about how a programmanipulates data without executing it. Generally, static analysis is used to perform globaloptimizations on programs [29{31]. Our goal is quite di�erent: we use static analysis inorder to perform model reductions before or during its generation or validation. Theexpected results are the reduction of the state space of the model or of the state vector.We want to perform two types of static analysis: property independent and propertydependent analysis. In the �rst case, we use classic analysis methods such as live variableanalysis or constant propagation, without regarding any particular property or test pur-pose we are interesting to validate. In the second case, we take into account informationson data involved in the property and propagate them over the static control structureof the program. Presently, only analysis of the �rst type is implemented but we arealso investigating constraint propagation and more general abstraction techniques. Forinstance, through the connection with invest we will be able to compute abstract if

programs using general and powerful abstraction techniques.Live variables analysisA variable is live in a control state if there is a path from this state along which itsvalue can be used before it is rede�ned. An important reduction of the state space of themodel can be obtained by taking into account in each state only the values of the livevariables.More formally, the reduction considered is based on the relation �live de�ned overmodel states: two states are related if and only if they have the same values for all thelive variables. It can be easily proved that �live is an equivalence relation and furthermore,that it is a bisimulation over the model states. This result can be exploited in severalways. Due to the local nature of �live it is possible to directly generate the quotientmodel w.r.t. �live instead of the whole model without any extra computation. Exactlythe same reduction is obtained when one modi�es the initial program by introducing sys-tematic assignments of non-live variables to some particular value. This second approachis presently implemented for IF programs.Consider now the token ring protocol example. In the idle state the live variables areround and worried, in the critical state only round is live, while variables sender, adrand rnd are never live. The reduction obtained by the live reduction is shown in Table 1(line 3).Constant propagationA variable is constant in a control state if its value can be statically determined in thestate. Two reductions are possible. The �rst one consists in modifying the source programby replacing constant variables with their value. Thus, it is possible to identify and thento eliminate parts of dead code of the program e.g. guarded by expressions which alwaysevaluates to false, therefore to increase the overall e�ciency of the program. The secondreduction concerns the size of the state vector: for a control state we store only the valuesof the non-constant variables. The constant values do not need to be stored, they canalways be retrieved by looking at the control state.Note that, both of the proposed reductions do not concern the number of states of themodel, they only allow to improve the state space exploration (time and space). However,this kind of analysis may be particularly useful when considering extra information aboutthe values assigned to variables, extracted from the property to be checked.4.3. Compositional generationAs shown in the previous section, e�cient reductions are obtained by replacing a modelM by its quotient w.r.t an equivalence relation like �live. However, stronger reductionscan be obtained by taking into account the properties under veri�cation. In particular,it is interesting to consider a weaker equivalence R | which should be a congruence forparallel composition |, able to abstract away non observable actions. The main di�cultyis to obtain the quotient M=R without generating M �rst.A possible approach is based on the \divide and conquer" paradigm: it consists insplitting the program description into several pieces (i.e., processes or process sets), gen-erating the model Mi associated with each of them, and then composing the quotientsMi=R. Thus, the initial program is never considered as a whole and the hope is that the

generated intermediate models can be kept small.This compositional generation method has already been applied for speci�cation for-malisms based on rendez-vous communication between processes, and has been showne�cient in practice [32{34]. To our knowledge it has not been investigated within an sdlframework, may be, because bu�ers raise several di�culties or due to lack of suitabletools.To illustrate the bene�t of a compositional approach we brie
y describe here its appli-cation to the token ring protocol:1. We split the if description into two parts, the �rst one contains processes S1 andS2 and the second one contains processes S3 and S4. For each of these descriptionsthe internal bu�er between the two processes is a priori bounded to two places.Note that, when a bounded bu�er over
ows during simulation, a special over
owtransition occurs in the corresponding execution sequence.2. The lts associated with each of these two descriptions are generated consideringthe \most general" environment, able to provide any potential input. Therefore,the over
ow transitions appear in these lts (claim and token can be transmittedat any time).3. In each lts the input and output transitions relative to the internal bu�ers (Q2 andQ4) are hidden (i.e., renamed to the special � action); then these lts are reducedw.r.t an equivalence relation preserving the properties under veri�cation. For thesake of e�ciency we have chosen the branching bisimulation [35], also preserving allthe safety properties (e.g. mutual exclusion).4. Each reduced lts is translated back into an if process, and these two processesare combined into a single if description, including the two remaining bu�ers (Q1and Q3). It turns out that the lts generated from this new description containsno over
ow transitions (they have been cut o� during this last composition, whichcon�rms the hypothesis on the maximal size of the internal bu�ers).The �nal lts is branching bisimilar to the one obtained from the initial if description.The gain, obtained by using compositional generation in addition to static analysis, canbe found in Table 1 (line 4).ResultsWe summarize in the table below the size of the lts obtained from the token-ring pro-tocol using several generation strategies.Table 1. lts obtained for the token ring exampleGeneration method Number of states Number of transitions1 Objectgeode 3018145 71190432 if 537891 22983483 if + live reduction 4943 196644 if + compositional generation 1184 4788

The di�erence between the model generated by Objectgeode (line 1) and the oneobtained from if (line 2) are due to the following reasons:� the handling of timer expirations in Objectgeode involves two steps: �rst the time-out signal is appended to the input bu�er of the process, and later it is consumed,whereas in if these two steps are collapsed into a single one, bypassing the bu�er.� Objectgeode introduces \visible" states for each informal decision, whereas thesestates do not appear in the model obtained from if.The most spectacular reduction is obtained by the live-reduction: the reduced modelis about 100 times smaller than the one obtained by direct generation, preserving allproperties (models 2 and 3 are strongly bisimilar).Finally, when considering as visible only the open and close signals all four lts arebranching bisimilar to the one shown in Figure 5, which proves, in particular, the mutualexclusion property of the protocol.
open2

close1

close2

close2

open3close3

open1

open4

close4
close1

close4

Figure 5. The reduced behavior of the token ring.5. CONCLUSION AND PERSPECTIVESWe have presented the formalism if which has been designed as an intermediate rep-resentation for sdl, but it can be used as a target language for other fdt as it containsmost of the concepts used in these formalisms. The use of if o�ers several advantages:� if has a formal semantics based on the framework of communicating timed au-tomata. It has powerful concepts interesting for speci�cation purposes, such asdi�erent urgency types of transitions, synchronous communication, asynchronouscommunication through various bu�er types (bounded, unbounded, lossy, : : :).� if programs can be accessed at di�erent levels through a set of well de�ned api.These include not only several low-level model representations (symbolic, enumer-ative, ...) but also higher level program representation, where data and communi-cation structures are still explicit. Using these api several tools have been alreadyinterconnected within an open environment able to cover a wide spectrum of vali-dation methods.

The if package is available at http://www-verimag.imag.fr/DIST SYS/IF. In particu-lar, a translation tool from sdl to if has been implemented and allows both to experimentdi�erent semantics of time for sdl and to analyze real-life sdl speci�cations with cadp.A concept which is not provided in if is dynamic creation of new process instances ofprocesses and parameterization of processes; this is due to the fact that in the frameworkof algorithmic veri�cation, we consider only static (or dynamic bounded) con�gurations.However, it is foreseen in the future to handle some kinds of parameterized speci�cations.The results obtained using the currently implemented static analysis and abstractionsmethods are very encouraging. For each type of analysis, it was possible to build amodule which takes an if speci�cation as input and which generates an reduced one. Thisarchitecture allows to chain several modules to bene�t from multiple reductions appliedto the same initial speci�cation. We envisage to experiment more sophisticated analysis,such as constraints propagation, and more general abstraction techniques. This will beachieved either by developing dedicated components or through the connections with toolslike invest.REFERENCES1. Verilog. ObjectGEODE SDL Simulator - Reference Manual.http://www.verilogusa.com/solution/pages/ogeode.htm, 1996.2. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.CADP: A Protocol Validation and Veri�cation Toolbox. In Proceedings of CAV'96 (NewBrunswick, USA), volume 1102 of LNCS, August 1996.3. J.-C. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in Automatic Generationof Test Suites for Protocols with Veri�cation Technology. SCP, 29, 1997.4. ITU-T. Annex F.2 to Recommendation Z-100. Speci�cation and Description Language(SDL) - SDL Formal De�nition: Static Semantics. 1994.5. ITU-T. Annex F.3 to Recommendation Z-100. Speci�cation and Description Language(SDL) - SDL Formal De�nition: Dynamic Semantics. 1994.6. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1984.7. D. Bj�rner and C.B. Jones. Formal Speci�cation and Software Development. Prentice HallPublications, 1982.8. M. Broy. Towards a Formal Foundation of the Speci�cation and Description Language SDL.Formal Aspects on Computing, 1991.9. J.C. Godskesen. An Operational Semantic Model for Basic SDL. Technical Report TFL RR1991-2, Tele Danmark Research, 1991.10. J.A. Bergstra and C.A. Middelburg. Process Algebra Semantics of 'SDL. In 2nd Workshopon ACP, 1995.11. J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete Time Process Algebra and theSemantics of SDL. Technical Report SEN-R9809, CWI, June 1998.12. S. Mork, J.C. Godskesen, M.R. Hansen, and R. Sharp. A Timed Semantics for SDL. InFORTE IX: Theory, Applications and Tools, 1997.13. U. Gl�aser and R. Karges. Abstract State Machine Semantics of SDL. Journal of UniversalComputer Science, 3(12), 1997.14. G. Le Lann. Distributed Systems { Towards a Formal Approach. In Information Processing77. IFIP, North Holland, 1977.15. E. Chang and R. Roberts. An Improved Algorithm for Decentralized Extrema-Finding in

Circular Con�gurations of Processes. Communications of ACM, 22(5), 1979.16. H. Garavel and L. Mounier. Speci�cation and Veri�cation of Distributed Leader ElectionAlgorithms for Unidirectional Ring Networks. SCP, 29, 1997.17. M. Bozga, J-C. Fernandez, L. Ghirvu, S. Graf, L. Mounier, J.P. Krimm, and J. Sifakis. TheIntermediate Representation IF. Technical report, Verimag, 1998.18. R. Alur, C. Courcoubetis, and D.L. Dill. Model Checking in Dense Real Time. Informationand Computation, 104(1), 1993.19. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-Time Systems. Information and Computation, 111(2), 1994.20. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In InternationalSymposium: Compositionality - The Signi�cant Di�erence, Malente (Holstein, Germany),1998. to appear in LNCS.21. S. Yovine. Kronos: A Veri�cation Tool for Real-Time Systems. Software Tools for Tech-nology Transfer, 1(1-2), December 1997.22. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proceedings ofCAV'97, Haifa, volume 1254 of LNCS, June 1997.23. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In�nite State SystemsCompositionally and Automatically. In Proceedings of CAV'98, Vancouver, Canada, volume1427 of LNCS, June 1998.24. A. Kerbrat, C. Rodriguez, and Y. Lejeune. Interconnecting the Objectgeode and cadpToolsets. In Proceedings of SDL Forum'97. Elsevier Science, 1997.25. B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL Behaviors with GEODE.In Proceedings of SDL Forum'95. Elsevier Science, 1995.26. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol Veri�cation with thealdebaran Toolset. Software Tools for Technology Transfer, 1, 1997.27. H. Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�cation, Simulation,and Testing. In Proceedings of TACAS'98, volume 1384 of LNCS, March 1998.28. M. Bozga. SMI: An Open Toolbox for Symbolic Protocol Veri�cation. Technical Report97-10, Verimag, September 1997.29. A. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley, Readings, MA, 1986.30. M.N. Wegman and F.K. Zadeck. Constant Propagation with Conditional Branches. ACMTransactions on Programming Languages and Systems, 13(2), April 1991.31. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann Publishers,San Francisco, CA, 1997.32. S. Graf, G. L�uttgen, and B. Ste�en. Compositional Minimisation of Finite State Systemsusing Interface Speci�cations. Formal Aspects of Computation, 3, 1996.33. A. Valmari. Compositionality in State Space Veri�cation. In Application and Theory ofPetri Nets, volume 1091 of LNCS, 1996.34. J.P. Krimm and L. Mounier. Compositional State Space Generation from LOTOS Programs.In Proceedings of TACAS'97, volume 1217 of LNCS, Enschede, The Netherlands, 1997.35. R.J. van Glabbeek and W.P. Weijland. Branching-Time and Abstraction in BisimulationSemantics. CS R8911, CWI, 1989.

