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We present work of a project for the improvement of a specification/validation toolbox
integrating a commercial toolset ObjectGEODE and different validation tools such as the
verification tool CADP and the test sequence generator TGV.

The intrinsic complexity of most protocol specifications lead us to study combinations of
techniques such as static analysis and abstraction together with classical model-checking
techniques. Experimentation and validation of our results in this context motivated the
development of an intermediate representation for SDL called I1F. In IF, a system is repre-
sented as a set of timed automata communicating asynchronously through a set of buffers
or by rendez-vous through a set of synchronization gates. The advantage of the use of such
a program level intermediate representation is that it is easier to interface with various ex-
isting tools, such as static analysis, abstraction and compositional state space generation.
Moreover, it allows to define for SDL different, but mathematically sound, notions of time.
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1. INTRODUCTION

spL and related formalisms such as MSC and TTCN are at the base of a technology for
the specification and the validation of telecommunication systems. This technology will
be developing fast due to many reasons, institutional, commercial and economical ones.
SDL is promoted by ITU and other international standardization bodies. There exist com-
mercially available tools and most importantly, there are increasing needs for description
and validation tools covering as many aspects of system development as possible. These
needs motivate the work for enhancement of the existing standards undertaken by ITU
and ETsI, in particular.

Among the work directions for improvement of SDL, an important one is the description
of non functional aspects of the behavior, such as performance and timing. Finding a
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“reasonable” notion of time is a central problem which admits many possible solutions
depending on choices of semantic models. This is certainly a non trivial question and this
is reflected by the variety of the existing proposals.

Choosing an appropriate timed extension for SDL should take into account not only
technical considerations about the semantics of timed systems but also more pragmatic
ones related to the appropriateness for use in a system engineering context. We believe
that the different ideas about extensions of the language must be validated experimentally
before being adopted to avoid phenomena of rejection by the users. Furthermore, it is
important to ensure as much as possible compatibility with the existing technology and
provide evidence that the modified standard can be efficiently supported by tools.

Another challenge for the existing technology for SDL to face the demand for description
and validation of systems of increasing size, is to provide environments that allow the user
to master this complexity. The existing commercial tools are quite satisfactory in several
respects and this is a recognized advantage of SDL over other formalisms poorly supported
by tools. However, it is necessary to improve the existing technology to avoid failing to
keep up. Mastering complexity requires a set of integrated tools supporting user driven
analysis. Of course, the existing tools such as simulators, verifiers, automatic test gener-
ators can be improved. Our experience from real case studies shows that another family
of tools is badly needed to break down complexity. All the methods for achieving such a
goal are important ranging from the simplest and most “naive” to the most sophisticated.

In this paper we present work of a project for the improvement of a specification and
validation toolbox interconnecting ObjectGEODE[1] and different validation tools such as
cADP[2] developed jointly with the VASY team of Inria Rhone-Alpes and TGV[3] devel-
oped jointly with the PAMPA team of IRISA. The project has two complementary work
directions. The first is the study and the implementation of timed extensions for SDL; this
work is carried out in cooperation with Verilog, Sema Group and CNET within a common
project. The second is coping with complexity by using a combination of techniques based
on static analysis, abstraction and compositional generation. Achieving these objectives
requires both theoretical and experimental work. Experimentation and validation of our
results in this context motivated the development of an intermediate representation for
SDL called 1F. 1F is based on a simple, and semantically sound model for distributed timed
systems which is asynchronously communicating timed automata (automata with clocks).
A translator from a static subset of SDL to IF has been developed and IF has been con-
nected to different tools of our toolbox. The use of such an intermediate representation
confers many advantages.

e IF to implement and evaluate different semantics of time for sSDL as the underlying
model of IF is general enough to encompass a large variety of notions of urgency,
time non determinism and different kinds of real-time constructs.

e 1F allows a flattened description of the corresponding SDL specification with the
possibility of direct manipulation, simplification and generally application of analysis
algorithms which are not easy to perform using commercial tools which, in general,
are closed.

e IF can be considered as a common representation model for other existing languages
or for the combination of languages adopting different description styles.



Related work

After its standardization in the eighties, a lot of work has been done concerning the
mathematical foundations of sDL. The first complete semantics was given by the annex F
to the recommendation Z.100 [4,5] and is based on a combination of cSP [6] and META-1v
[7]. Even if it is the reference semantics of SDL (about 500 pages), it is far from being
complete and contains many inconsistencies and obscure points.

In [8] is given a semantics for SDL based on streams and stream processing functions. It
deals with a subset of SDL and the timing aspects are simplified. An operational semantics
which covers SDL systems, processes, blocks and channels is given in [9]. It defines a
method to build labeled transition systems from SDL specifications. The approach is
relatively complete, however in this case too, time is not handled in a satisfactory manner.
An important work is done in [10,11] which gives a semantics based on process algebra
to a rather simple subset of sDL, called ¢ SDL. A method is given, for translating each
SDL system into a term of PAP*-ID which is a discrete time process algebra extended
with propositional signals and conditions, counting process creation operator, and a state
operator. Finally, we mention the work of [12] which proposes an axiomatic semantics
based on Duration Calculus and the work of [13] which uses abstract real time machines.

Our aim is somewhat different from the one of the above mentioned works, as it is
not only to present a sound semantics, especially concerning timing aspects, but also to
make forward a step concerning verification of SDL specifications: we give a program level
intermediate representation into which a large subset of SDL and also other specification
formalisms can be translated — by preserving its semantics — and which is the input
language of an open verification environment.

The paper is organized as follows. In the next section, we present an example used
throughout the paper to illustrate our work. Then, we describe the main features of the
IF formalism used as an intermediate representation for SDL. Finally, we present an open
validation environment for SDL specifications and illustrate its usefulness by means of
some experimental results.

2. AN EXAMPLE: A DISTRIBUTED LEADER ELECTION ALGORITHM

We present a simple example used throughout the paper to illustrate the introduced
formalisms and verification methods. We consider a token ring, that is a system of n
stations Sy, ..., Sy, connected through a circular network, in which a station is allowed
to access some shared resource R only when it “owns” a particular message, the token.
If the network is unreliable, it is necessary to recover from token loss. This can be done
using a leader election algorithm [14,15] to designate a station responsible for generating
a new token.

Formal specifications and verifications of these algorithms already exist and we consider
here an SDL version of the one described in [16]. Figure 1 shows the system view of the
specification. The signals open and close denote the access and the release of the shared
resource (here part of the environment). The signals token and claim are the messages
circulating on the ring.

All stations S; are identical and modeled by the SDL process of Figure 2. On expiration
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Figure 1. The token-ring architecture

of the timer worried token loss is assumed: this timer is set when the station waits for
the token, and reset when it receives it. The “alternating bit” round is used to distinguish
between valid claims (emitted during the current election phase) and old ones (cancelled
by a token reception). In the idle state, a station may either receive the token from its
neighbor (then it reaches the critical state and can access the resource), receive a timer
expiration signal (then it emits a claim stamped with its address and the current value
of round) or receive a claim. A received claim is “filtered” if its associated address is
smaller than its own address and transmitted unchanged if it is greater. If its own valid
claim is received, then this station is elected and generates a new token.
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Figure 2. The behavior of station S;



In the SDL specification, message loss must be modeled explicitly (for instance by in-
troducing a non deterministic choice when a token or claim is transmitted by a station).
Using the intermediate representation IF, message loss can be expressed simpler by means
of lossy buffers, for which exist particular verification techniques.

3. IF: AN INTERMEDIATE REPRESENTATION FOR SDL

In the following sections, we give a brief overview of the intermediate representation IF,
its operational semantics in terms of labeled transition systems and the translation of a
rather extended subset of SDL into IF. A more complete description can be found in [17].
In particular, we do not present the rendez-vous communication mechanism here.

3.1. An overview on IF

In 1F, a system is a set of processes (state machines as SDL processes) communicating asyn-
chronously through a set of buffers (which may be lossy /reliable and bounded /unbounded).
Each process can send and receive messages to/from any buffer. The timed behavior of a
system can be controlled through clocks (like in timed automata [18,19]) and timers (SDL
timers, which can be set, reset and expire when they reach a value below 0).

3.1.1. IF system definition
A system is a tuple Sys = (glob-def,PROCS) where

e glob-def= (type-def,sig-def,var-def,buf-def) is a list of global definitions, where type-def
is a list of type definitions, sig-def defines a list of parameterized signals (as in SDL),
var-def is a list of global variable definitions, and finally, buf-def is a list of buffers
through which the processes communicate by asynchronous signal exchange.

e PROCS defines a set of processes described in section 3.1.2.

3.1.2. IF process definition
Processes are defined by a set of local variables, a set of control states and a set of control
transitions. A process PEPROCS is a tuple P= (var-def, Q, CTRANS), where:

e var-def is a list of local variable definitions (including timers and clocks)

e Q is a set of control states on which the following attributes are defined:

— stable(q) and init(q) are boolean attributes, where the attribute stable allows
to control the level of atomicity, which is a useful feature for verification: only
stable states are visible on the semantic level.

— save(q), discard(q) are lists of filters of the form

signal-list in buf if cond.
save(q) is used to implement the save statement of SDL; its effect is to preserve
all signals of the list in buf, whenever the condition cond holds.
discard(q) is used to implement the implicit discarding of non consumable
signals of SDL. When reading the next input signal in buf, all signals to be
discarded in buf preceding it are discarded in the same atomic transition.

e CTRANS is a set of control transitions, consisting of two types of transitions between
two control states q,q'€Q:



— input transitions which are triggered by some signal read from one of the
communication buffers as in SDL:
g — input ; body
) '

— internal transitions depending not on communications:
bod
g~ y q/
(w)
Where in both cases:

e g is a predicate representing the guard of the transition which may depend on
variables visible in the process (including timers, clocks and and buffers, where
buffers are accessed through a set of primitives).

e body is a sequence of the following types of atomic actions:

— outputs of the form “output sig(par_list) to buf’ have as effect to append
a signal of the form “sig(par_list)” at the end of the buffer buf.

— usual assignments.

— settings of timers of the form “set timer := exp”.  This has the effect to
activate timer and to set it to the value of exp. An active timer decreases
with progress of time. SDL timers expire when they reach the value 0, but in
IF any timer tests are allowed. Clocks are always active and they increase with
progress of time.

— resettings of timers and clocks, which have the effect to inactivate timers and
to assign the value 0 to clocks.

e The attribute uc{eager, delayable, lazy} defines the urgency type of each tran-
sition. eager transitions have absolute priority over progress of time, delayable
transitions may let time progress, but only as long as they remain enabled, whereas
lazy transitions cannot prevent progress of time. These urgency types are intro-
duced in [20] and lead to a more flexible notion of urgency than in timed automata,
where enabled transitions become urgent when an invariant — depending on values
of timers and ordinary variables — associated with the starting state ¢ becomes
false. For compatibility with timed automata we allow also the definition of an
attribute tpc(q) representing such an invariant (defining a necessary condition for
time progress). Notice also that

— the concept of urgency defines a priority between ordinary transitions and time
progress which moreover may vary with time. Thus the concept of urgency is
orthogonal to the usual concept of priority between ordinary transitions.

— urgency and tpc attributes are only relevant in stable states, as only stable states
are visible at the semantic level, and therefore only in stable states interleaving
of transitions (ordinary ones as well as time progress) is possible.

e input is of the form “input sig(reference_list) from buf if cond” where
— sigis a signal,
— reference_list the list of references? in which received parameters are stored,

2that is an “assignable” expression such as a variable or an element of an array



— buf is the name of the buffer from which the signal should be read
— cond is a “postguard” defining the condition under which the received signal
is accepted; cond may depend on received parameters.

Intuitively, an input transition is enabled if its guard is true, the first signal in buf
— that can be consumed according to the save and discard attributes — is of the
form sig(vy,...v,) and the postguard cond holds after assigning to the variables of
the reference_list the corresponding values vy, ...v,,.

That means that the input primitive is — as in SDL — rather complicated, but if
one wants to translate the SDL input primitive by means of a simpler primitives,
one needs to allow access the elements of the buffer in any order. This means that
the input buffer becomes an ordinary array and no specific analysis methods can be
applied.

3.2. Semantics of IF
We show how with a process can be associated a labeled transition system, and then,
how these process models can be composed to obtain a system model.

3.2.1. Association of a model with a process
Let P= (var-def, Q, CTRANS) be a process definition in the system Sys and:

e Let TIME be a set of environments for timers and clocks (for simplicity of the
presentation, we suppose that these environments are global, that is, applicable to
all timers and clocks occurring in Sys). An environment 7 €TIME defines for each
clock a value in a time domain T (positive integers or reals), and for each timer
either a value in T or the value “inac” (represented by a negative value) meaning
that the timer is not active. Setting or resetting a timer or a clock affects a valuation
7 in an obvious manner. Progress of time by an amount ¢ transforms the valuation
T into the valuation 7 H ¢ in which the values of all clocks are increased by 4, and
the values of all timers are decreased by § (where the minimal reachable value is
Z€ro).

e Let BUF be a set of buffer environments B, representing possible contents of the
buffers of the system, on which all necessary primitives are defined: usual buffer
access primitives, such as “get the first signal of a given buffer, taking into account
the save and the discard attribute of a given control state”, “append a signal at the
end of a buffer’,... and also “time progress by amount 0”, denoted by B H 9, is
necessary for buffers with delay.

e Let ENV be a set of environments £ defining the set of valuations of all other
variables defined in the system Sys.

The semantics of P is the labeled transition system [P] = (@ x VAL, TRANS, TTRANS) where
e Qx VAL is the set of states and VAL= ENV xTIME xBUF is the set of data states.
e TRANS is the set of untimed transitions obtained from control transitions by the

following rule: for any (£,7,B),(€',7",B')€VAL and input transition (and simpler
for an internal transition)



g — (sig(z1...xzn),buf,cond) ; body\

q € CcTRANS implies
()

@ (ET.B) 5 (¢, 7,8) e Trans, i

— the guard g evaluates to true in the environment (€,7,B)

— the first element of buf in the environment B— after elimination of appropriate
signals of the discard attribute and saving of the signals of the save attribute —
is a signal sig(v;...v,), and the updated buffer environment, after consumption
of sig(vy...v,), is B”

— &"=Evy..v5/x1...x,] and T"=Tvy...v,/x1...2,] are obtained by assigning to
x; the value v; of the received parameters,

— the postguard cond evaluates to true in the environment (£”,7",B")

— &' is obtained from £” by executing all the assignments of the body,

— T is obtained from 7" by executing all the settings and resettings occurring
in the body, without letting time progress,

— B’ is obtained from B" by appending all signals required by outputs in the
body,

— [ is an appropriate labeling function used for tracing.

e TTRANS is the set of time progress transitions, which are obtained by the following
rule which is consistent with the intuitively introduced notion of urgency: in any
state (q,(£,7,B)), time can progress by the amount §, that is

(0. (E,T.B) > (q,(6,TB6,BES)) € TTRANS if

1. qis stable and

2. time can progress in the state (q,(€,7,B)), and

3. time can progress by steps until 9: whenever time has progressed by an amount
§" where 0 < ¢’ < ¢, time can still progress in the reached state which is

(q,(E, T Bd',BHYJ)).

Time can progress in state (q,(€,7,B8)) if and only if the following conditions hold:

— the time progress attribute ¢pc(q) holds in (€,7T,B)

— no transition with urgency attribute eager is enabled in (q,(£,7,8))

— for each delayable transition tr enabled in (q,(£,7,B)), there exists a positive
amount of time ¢, such that tr cannot be disabled while time progresses by e.

3.2.2. Composition of models

The semantics of a system Sys = (glob-def,PROCS) is obtained by composing the models
of processes by means of an associative and commutative parallel operator ||.

Let [P;] = (Q;x VAL, TRANS,, TTRANS;) be the models associated with processes (or sub-
systems) of Sys. Then, [P;] || [P2] = (A X VAL, TRANS, TTRANS) where

_ init((q;, ) = init(q,) A init(q,)
* 0= Qi xQ; and { stable((qy,qy)) = stable(q,) A stable(q,)



e TRANS is the smallest set of transitions obtained by the following rule and its
symmetrical rule:

(q1,V) £> (qy, V') € TrRANS; and —stable(qy) V stable(gs)

14
((q1,42),V) — ((d},q2),V') € TRANS

e TTRANS is the smallest set of transitions obtained by the following rule:

(q1,V) i (q1,V') € TTRANS, and (q2,V) i (q2, V') € TTRANS,

0
((¢1,42),V) — ((q1,42),V') € TTRANS

3.3. Translation from SDL to IF

We present the principles of the translation from SDL to IF considering the structural
and the behavioral aspects. We do not present the translation of data aspects, and in
particular the object oriented features, as they do not interfere with our framework.

3.3.1. Structure

SDL provides a complex structuring mechanism using blocks, substructures, processes,
services, etc, whereas IF systems are flat, that is consisting of a single level of processes,
communicating directly through buffers. Therefore, a structured SDL system is flattened
by the translation into IF. Also, the structured communication mechanism of SDL using
channels, signal routes, connection points, etc is transformed into point to point com-
munication through buffers by computing for every output a statically defined unique
receiver process (respectively its associated buffer).

All predefined SDL data types, arrays, records and enumerated types can be translated.
For abstract data types, only the signatures are translated, and for simulation, the user
must provide an appropriate implementation.

In spL all signals are implicitly parameterized with the pid of the sender process,
therefore in IF all signals have an additional first parameter of type pid.

3.3.2. Processes

Basically, for each instance of an SDL process, we generate an equivalent IF process
and associate with it a default input queue. If the number of instances can vary in some
interval, the maximal number of instances is created.

Variables: FEach local variable/timer of an SDL process becomes a local variable/timer
of the corresponding IF process. We define also variables sender, offspring and parent
which are implicitly defined in sDL. Remote exported/imported variables declared inside
an SDL processes become global variables, declared at IF system level.

States: All spL states (including start and stop) are translated into stable 1F control
states. As IF transitions have a simpler structure than SDL transitions, we introduce also
systematically auxiliary non stable states for each decision and each label (corresponding
to a “join”) within an SDL transition. For each stable 1F state we define the save and
discard sets to be the same as for the corresponding SDL state.



Transitions: For each minimal path between two IF control states, an IF transition is
generated. It contains the triggers and actions defined on that path in the same order.

All the generated transitions are by default eager i.e. they have higher priority than
the progress of time; this allows to be conform with the notion of time progress of the tool
ObjectGEODE; more liberal notions of time progress can be obtained by using different
translations from SDL to IF (see the example below).

inputs: SDL signal inputs are translated directly into IF inputs, where the sender
parameter must be handled explicitly: each signal receives the first parameter in
the local variable sender.

Spontaneous input none is translated by an assignment of the sender to the pid of
the current process. No input part is generated in this case.

timeouts expirations are not notified via timeout signals in IF: each timeout signal
consumption in an SDL process is translated into a transition without input, which
tests if the corresponding timer evaluates to zero, followed by the reset of that timer.
The reset is needed to avoid multiple consumption of the same timeout expiration.

priority inputs: are translated into normal inputs by enforcing the guards of all low
priority inputs and the save set of the source state. The guard of each low priority
input is conjuncted with a term saying that “there is no higher priority signal in the
buffer”. All low priority signals are explicitly saved if “at least one input with higher
priority exists in the buffer’. Such tests can effectively be expressed by predefined
predicates on buffers.

continuous signal: SDL transitions triggered by a continuous signal test, are trans-
lated into an IF transition without input, whose guard is equivalent to the SDL
continuous signal.

enabling condition: an enabling condition following an SDL input signal is translated
directly into a post guarded input where the received parameters can be tested.

task: all SDL formal tasks are translated into IF assignments. Informal tasks become
comments in the IF specification.

set and reset: SDL timer sets become IF timer sets, where an absolute value “now + 17
becomes a relative value “7T”. SDL timer resets become IF timer resets.

output: SDL outputs become IF outputs: if the to pid-expression clause is present in
the SDL output, the same pid-expression is taken as destination for the 1F output.
Otherwise, according to signal routes signature, via restrictions, connections, etc. we
compute statically the set of all possible destinations. If this set contains exactly
one process instance, it become the IF destination, otherwise, this output is not
translated (and a warning is produced). Any output contains as first parameter the
pid of the sending process.

decision: each alternative of an SDL formal decision is translated into a guard start-
ing an IF-transition from the corresponding non stable state.

create: the dynamic creation of processes is not yet handled. But we will translate
this construction by using the rendez-vous mechanism of 1F: a new instance is
created (an “inactive” instance is activated) by synchronizing its first action with



the process creating (activating) it. During this synchronization, parameters can be
passed between the “creating” and the “created” process, such as the the values of
the parent and the offspring variables, etc.

e procedures: IF does not directly support procedures. But we handle a relatively large
class of SDL programs containing procedures by procedure inlining, which consists
in directly inserting the procedure graph, instead of its call, in the process graph.

Example: translation of the token ring to IF

To illustrate 1F, we present the translation of the token ring introduced in Section 2.
The translation of the structure is completely straightforward in this example. Figure 3
contains the IF version of the process Sy, where the additional non stable states are dotted.

if worried=0 if adr>S1
output claim(S1,S1,round) to Q2  output claim(S1,adr,rnd) to Q2
set worried:=1

if adr < S1

round:=true
. set worried:= 1

output Close(S1) to env
round:=not round

set worried:=1

output Token(S1) to Q2

input claim(sender adr,rmd)  ~.
from Q1

if rnd<>round

input token(sender)
from Q1

if adr=S1

-~ ftoken e
reset worried _ .7 ifrnd=round
output Open(S1) toenv™ "~

N
)
/

Figure 3. The “graphical” 1F description of station S

By default, all transitions are eager, which leads to the same behavior as in ObjectGEODE.
Thus, time can only progress, and the timeout occur, if the token is really lost (that is,
no transition is enabled), and therefore a leader election algorithm is only initiated if
necessary. In IF, a different notion of time, closer to reality, can be modeled, e.g. by
considering the transition from the critical state as lazy, thus allowing time to pass
in this state by an arbitrary amount. In order to limit the time a process can remain
in the critical state, one can consider this transition as delayable, introduce a clock
cl_crit which is reset when entering critical and add to the outgoing transition the
guard cl_crit<some_limit.

4. AN OPEN VALIDATION ENVIRONMENT BASED ON IF

One of the main motivations for developing IF is to provide an intermediate represen-
tation between several tools in an “open” validation environment for SDL. Indeed, none
of the existing tools provides all the validation facilities a user may expect. Therefore, we
want to allow them to cooperate, as much as possible using program level connections.
An important feature is the ability of the environment to be open: in particular connec-
tions with KRONOS [21] (a model checker for timed automata) and INVEST [22,23] (a tool
computing abstractions) are envisaged.
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Figure 4. An open validation environment for SDL

In this section, we first present the architecture of this environment and its main compo-
nents. Then, we describe in a more detailed manner two more recent modules concerning
static analysis (section 4.2) and compositional generation (section 4.3) which are based
on IF.

4.1. Architecture

The environment is based on two validation toolsets, ObjectGEODE and CADP, connected
through the intermediate representation IF. There exists already a connection between
these toolsets at the simulator level [24], however using IF offers two main advantages:

e The architecture still allows connections with many other specification languages or
tools. Thus, even specifications combining several formalisms could be translated
into a single IF intermediate code and globally verified.

e The use of an intermediate program representation where all the variables, timers,
buffers and the communication structure are still explicit, allows to apply methods
such as static analysis, abstraction, compositional generation. These methods are
crucial for the applicability of the model checking algorithms.

ObjectGEODE

ObjectGEODE is a toolset developed by VERILOG supporting the use of SDL, MSC and
OMT. It includes graphical editors and compilers for each of these formalisms. It also
provides a C code generator and a simulator to help the user to interactively debug an sSDL
specification. The ObjectGEODE simulator also offers some verification facilities since it
allows to perform automatic simulation (either randomly or exhaustively), and behavioral
comparison of the specification with special state machines called observers [25].



CADP and TGV

We have been developing for more than ten years a set of tools dedicated to the design
and verification of critical systems. Some of them are distributed in collaboration with the
VAsY team of INRIA Rhone-Alpes as part of the CADP toolset [2,26]. We briefly present
here two verifiers integrated in CADP (ALDEBARAN and EVALUATOR) and the test sequence
generator TGV [3] built upon CADP jointly with the PAMPA project of IRISA. These tools
apply model-checking on behavioral models of the system in the form of labeled transition
systems (LTS). ALDEBARAN allows to compare and to minimize finite LTS with respect
to various stmulation or bisimulation relations. This allows the comparison between the
observable behavior of a given specification with its expected one, expressed at a more
abstract level. EVALUATOR is a model-checker for temporal logic formulas expressed on
finite LTS. The temporal logic considered is the alternating-free p-calculus. TGV aims
to automatically generate test cases for conformance testing of distributed systems. Test
cases are computed during the exploration of the model and they are selected by means
of test purposes. Test purposes characterize some abstract properties that the system
should have and one wants to test. They are formalized in terms of LTS, labeled with
some interactions of the specification. Finally, an important feature of CADP is to offer
several representations of LTS, enumerative and symbolic ones based on BDD, each of them
being handled using well-defined interfaces such as OPEN-CAESAR [27] and swmI [28].

SDL2TF and IF2C

To implement the language level connection through the IF intermediate representation
we take advantage of a well-defined API provided by the ObjectGEODE compiler. This
API offers a set of functions and data structures to access the abstract tree generated
from an SDL specification. SDL2IF uses this abstract tree to generates an IF specification
operationally equivalent to the SDL one.

IF is currently connected to CADP via the implicit model representation feature sup-
ported by CADP. IF programs are compiled using IF2C into a set of C primitives providing
a full basis to simulate their execution. An exhaustive simulator built upon these prim-
itives is also implemented to obtain the explicit LTS representation on which all cADP
verifiers can be applied.

4.2. Static analysis

The purpose of static analysis is to provide global informations about how a program
manipulates data without executing it. Generally, static analysis is used to perform global
optimizations on programs [29-31]. Our goal is quite different: we use static analysis in
order to perform model reductions before or during its generation or validation. The
expected results are the reduction of the state space of the model or of the state vector.

We want to perform two types of static analysis: property independent and property
dependent analysis. In the first case, we use classic analysis methods such as live variable
analysis or constant propagation, without regarding any particular property or test pur-
pose we are interesting to validate. In the second case, we take into account informations
on data involved in the property and propagate them over the static control structure
of the program. Presently, only analysis of the first type is implemented but we are
also investigating constraint propagation and more general abstraction techniques. For
instance, through the connection with INVEST we will be able to compute abstract IF



programs using general and powerful abstraction techniques.

Live variables analysis

A variable is live in a control state if there is a path from this state along which its
value can be used before it is redefined. An important reduction of the state space of the
model can be obtained by taking into account in each state only the values of the live
variables.

More formally, the reduction considered is based on the relation ~y;,. defined over
model states: two states are related if and only if they have the same values for all the
live variables. It can be easily proved that ~;,, is an equivalence relation and furthermore,
that it is a bisimulation over the model states. This result can be exploited in several
ways. Due to the local nature of ~y;,, it is possible to directly generate the quotient
model w.r.t. ~y;,. instead of the whole model without any extra computation. Exactly
the same reduction is obtained when one modifies the initial program by introducing sys-
tematic assignments of non-live variables to some particular value. This second approach
is presently implemented for IF programs.

Consider now the token ring protocol example. In the idle state the live variables are
round and worried, in the critical state only round is live, while variables sender, adr
and rnd are never live. The reduction obtained by the live reduction is shown in Table 1
(line 3).

Constant propagation

A variable is constant in a control state if its value can be statically determined in the
state. Two reductions are possible. The first one consists in modifying the source program
by replacing constant variables with their value. Thus, it is possible to identify and then
to eliminate parts of dead code of the program e.g. guarded by expressions which always
evaluates to false, therefore to increase the overall efficiency of the program. The second
reduction concerns the size of the state vector: for a control state we store only the values
of the non-constant variables. The constant values do not need to be stored, they can
always be retrieved by looking at the control state.

Note that, both of the proposed reductions do not concern the number of states of the
model, they only allow to improve the state space exploration (time and space). However,
this kind of analysis may be particularly useful when considering extra information about
the values assigned to variables, extracted from the property to be checked.

4.3. Compositional generation

As shown in the previous section, efficient reductions are obtained by replacing a model
M by its quotient w.r.t an equivalence relation like ~;,.. However, stronger reductions
can be obtained by taking into account the properties under verification. In particular,
it is interesting to consider a weaker equivalence R — which should be a congruence for
parallel composition —, able to abstract away non observable actions. The main difficulty
is to obtain the quotient M/R without generating M first.

A possible approach is based on the “divide and conquer” paradigm: it consists in
splitting the program description into several pieces (i.e., processes or process sets), gen-
erating the model M, associated with each of them, and then composing the quotients
M;/R. Thus, the initial program is never considered as a whole and the hope is that the



generated intermediate models can be kept small.

This compositional generation method has already been applied for specification for-
malisms based on rendez-vous communication between processes, and has been shown
efficient in practice [32-34]. To our knowledge it has not been investigated within an SDL
framework, may be, because buffers raise several difficulties or due to lack of suitable
tools.

To illustrate the benefit of a compositional approach we briefly describe here its appli-
cation to the token ring protocol:

1. We split the 1F description into two parts, the first one contains processes S; and
S, and the second one contains processes Sz and Sy. For each of these descriptions
the internal buffer between the two processes is a priori bounded to two places.
Note that, when a bounded buffer overflows during simulation, a special overflow
transition occurs in the corresponding execution sequence.

2. The TS associated with each of these two descriptions are generated considering
the “most general” environment, able to provide any potential input. Therefore,
the overflow transitions appear in these LTS (claim and token can be transmitted
at any time).

3. In each LTS the input and output transitions relative to the internal buffers (@, and
()4) are hidden (i.e., renamed to the special 7 action); then these LTS are reduced
w.r.t an equivalence relation preserving the properties under verification. For the
sake of efficiency we have chosen the branching bisimulation [35], also preserving all
the safety properties (e.g. mutual exclusion).

4. Each reduced TS is translated back into an IF process, and these two processes
are combined into a single IF description, including the two remaining buffers (@,
and @3). It turns out that the LTS generated from this new description contains
no overflow transitions (they have been cut off during this last composition, which
confirms the hypothesis on the maximal size of the internal buffers).

The final LTS is branching bisimilar to the one obtained from the initial IF description.

The gain, obtained by using compositional generation in addition to static analysis, can
be found in Table 1 (line 4).

Results
We summarize in the table below the size of the LTS obtained from the token-ring pro-
tocol using several generation strategies.

Table 1. LTS obtained for the token ring example

Generation method Number of states Number of transitions
1 ObjectGEODE 3018145 7119043
2 IF 537891 2298348
3 IF + live reduction 4943 19664
4 IF 4+ compositional generation 1184 4788




The difference between the model generated by ObjectGEODE (line 1) and the one
obtained from 1F (line 2) are due to the following reasons:

e the handling of timer expirations in ObjectGEODE involves two steps: first the time-
out signal is appended to the input buffer of the process, and later it is consumed,
whereas in IF these two steps are collapsed into a single one, bypassing the buffer.

e ObjectGEODE introduces “visible” states for each informal decision, whereas these
states do not appear in the model obtained from IF.

The most spectacular reduction is obtained by the live-reduction: the reduced model
is about 100 times smaller than the one obtained by direct generation, preserving all
properties (models 2 and 3 are strongly bisimilar).

Finally, when considering as visible only the open and close signals all four LTS are
branching bisimilar to the one shown in Figure 5, which proves, in particular, the mutual
exclusion property of the protocol.

\ close3 open3

closed close?

closed open2

Figure 5. The reduced behavior of the token ring.

5. CONCLUSION AND PERSPECTIVES

We have presented the formalism 1F which has been designed as an intermediate rep-
resentation for SDL, but it can be used as a target language for other FDT as it contains
most of the concepts used in these formalisms. The use of IF offers several advantages:

e IF has a formal semantics based on the framework of communicating timed au-
tomata. It has powerful concepts interesting for specification purposes, such as
different urgency types of transitions, synchronous communication, asynchronous
communication through various buffer types (bounded, unbounded, lossy, ... ).

e IF programs can be accessed at different levels through a set of well defined API.
These include not only several low-level model representations (symbolic, enumer-
ative, ...) but also higher level program representation, where data and communi-
cation structures are still explicit. Using these API several tools have been already
interconnected within an open environment able to cover a wide spectrum of vali-
dation methods.



The 1F package is available at http://www-verimag.imag.fr/DIST_SYS/IF. In particu-
lar, a translation tool from SDL to IF has been implemented and allows both to experiment
different semantics of time for SDL and to analyze real-life SDL specifications with CADP.

A concept which is not provided in IF is dynamic creation of new process instances of
processes and parameterization of processes; this is due to the fact that in the framework
of algorithmic verification, we consider only static (or dynamic bounded) configurations.
However, it is foreseen in the future to handle some kinds of parameterized specifications.

The results obtained using the currently implemented static analysis and abstractions
methods are very encouraging. For each type of analysis, it was possible to build a
module which takes an IF specification as input and which generates an reduced one. This
architecture allows to chain several modules to benefit from multiple reductions applied
to the same initial specification. We envisage to experiment more sophisticated analysis,
such as constraints propagation, and more general abstraction techniques. This will be
achieved either by developing dedicated components or through the connections with tools
like INVEST.
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