
An Algebraic Framework for Urgency

S�ebastien Bornot and Joseph Sifakis
Sebastien.Bornot@imag.fr Joseph.Sifakis@imag.fr

Verimag, 2 rue Vignate, 38610 Gi�eres, France

1 Introduction

Timed formalisms are extensions of untimed ones by adding clocks, real-valued
variables that can be tested and modi�ed at transitions. Clocks measure the time
elapsed at states when some implicitly or explicitly given time progress conditions
are satis�ed. Timed automata, timed process algebras and timed Petri nets can
be considered as timed formalisms.

The semantics of timed formalisms can be de�ned by means of transition
systems that perform time steps or (timeless) transitions. Clearly, such transition
systems ought to be well-timed in the sense that it is possible for time to progress
forever. It is recognized that the compositional description of timed systems
that satisfy even weak well-timedness requirements, is a non trivial problem. An
inherent di�culty is that usually, the semantics of operators compose separately
time steps and transitions by preserving urgency: time can progress in a system
by some amount if all its components respect their time progress constraints.
This leads to semantics based on a nice \orthogonality principle" between time
progress and discrete state changes. Parallel composition and other operators
have been de�ned according to this principle, for timed process algebras and
hybrid automata. However, composing independently time steps and transitions
may easily introduce timelocks. It is questionable if the application of a strong
synchronization rule for time progress is always appropriate. For instance, if two
systems are in states from which they will never synchronize, it may be desirable
not to further constrain time progress by the strong synchronization rule.

In several papers ([SY96,BS98,BST97]) we have studied compositional de-
scription methods that are based on \
exible" composition rules that relax ur-
gency constraints so as to preserve a weak well-timedness property that we call
time reactivity. The latter means that if no discrete transition can be executed
from a state then time can progress. Contrary to other stronger properties, time
reactivity is very easy to satisfy by relating directly time progress conditions and
enabling conditions of discrete transitions. We have proposed a simple sub-class
of timed automata, called timed automata with deadlines that are time reactive
and we have shown how choice and parallel composition operators that pre-
serve time reactivity can be de�ned. In this paper, we present a uni�ed algebraic
framework that encompasses the already presented results and provides laws for
choice and parallel composition on timed systems, modulo strong bisimulation.
The algebraic framework is characterized by the following.

{ Timed systems are obtained as the composition of timed actions by using
operators. A timed action is a discrete transition, labeled with an action
name, a guard, a deadline and a jump. Guards and deadlines are predicates
on clocks characterizing respectively, the states at which the action is enabled
and the states at which the action becomes urgent (time progress stops). We
require that the deadline implies the corresponding guard which guarantees
time reactivity. The jumps are functions that specify clock assignments when
the action is executed.

{ The operators are timed extensions of untimed operators. They preserve
both time reactivity and activity of components. The latter is the property
meaning that if some action can be executed after waiting some amount
of time in a component, then some action of the composed system can be
executed after waiting some (not necessarily the same) amount of time.
We propose timed extensions of choice and parallel composition operators
that are associative and commutative and are related by an expansion the-
orem. Choice operators are parameterized by an order relation on actions
that is proven to be useful, in particular to de�ne parallel composition with
maximal progress.

{ In addition to the usual laws for untimed operators, timed operators satisfy
speci�c laws re
ecting the structure of timed actions and assumptions about
their synchronization. We identify di�erent synchronization modes that take
into account the possibility of waiting of the components and study their
properties.

The paper is organized as follows. Section 2 presents the basic model, which
is essentially automata with clocks, an abstraction of timed automata without
the usual restrictions on guards and assignments. Section 3 and section 4 present
respectively, basic results on priority choice operators and parallel composition,
such as associativity, activity preservation and the expansion theorem. Section
5 describes the algebraic framework. Two examples illustrating its use are given
in section 6. We conclude by discussing future work directions and relations to
existing work.

2 Timed Systems

2.1 Background

Let X be a set of real-valued variables called clocks de�ned on the set of
non-negative reals R�0. Clocks will be used as state variables measuring time
progress. The set of the valuations of X isomorphic to R�0

n for some n, is de-
noted by V . Constant true (resp. false) denotes the predicate that is true (resp.
false) for any valuation v 2 V . For any non-negative real t, we represent by v+ t
the valuation obtained from v by increasing by t the values of all the clocks.

De�nition 1. Left- and right-closure
A predicate p on X is called left-closed if

8v : :p(v)) 9� > 0 : 8�0 � � : :p(v + �0)

It is called right-closed if it satis�es the previous expression where p(v + �0) is
replaced by p(v � �0).

Notice that these two de�nitions correspond to the usual notions if we con-
sider p as a function of time, where v is a clock valuation.

De�nition 2. Rising and falling edge
Given a predicate p on clocks X, we de�ne the rising edge of p, noted p " by:

p " (v) = p(v) ^ 9� > 0 : 8�0 2 (0; �] : :p(v � �0) _
:p(v) ^ 9� > 0 : 8�0 2 (0; �] : p(v + �0)

The falling edge of p, noted p #, is de�ned by the same formula where v� �0 and
v + �0 are exchanged.

De�nition 3. Modal operators
Given a predicate p on V , we de�ne the modal operators 3k p (\eventually p
within k") and 3- k p (\once p since k"), for k 2 R�0 [f1g.

3k p (v) i� 9t 2 R�0 0 � t � k: p(v + t)
3- k p (v) i� 9t 2 R�0 0 � t � k: 9v0 2 V: v = v0 + t ^ p(v0)

We write 3p and 3- p for 31 p and 3- 1 p, respectively, and 2p and 2- p for
:3:p and :3- :p, respectively.

Notice that the operators 3k and 3- k are just a notation for existential quan-
ti�cation over time and should not be confused with temporal logic operators.
Expressions with modal or edge operators can be reduced to predicates on X
whenever quanti�cation over time can be eliminated e.g., when the operators
are applied to linear constraints on X. For example, 3(1 � x � 2) is equivalent
to x � 2 and 32(3 � x � 5) is equivalent to 1 � x � 5.

2.2 Timed Systems

De�nition 4. Timed systems
A Timed System is:

{ An untimed labeled transition system (S;!; A) where
� S is a �nite set of control states
� A is a �nite vocabulary of actions
� !� S �A� S is an untimed transition relation

{ A �nite set X of clocks.
{ A labeling function h mapping untimed transitions of ! into timed transi-

tions : h(s; a; s0) = (s; (a; g; d; f); s0), where
� g and d are predicates onX called respectively the guard and the deadline
of the transition. We require that d) g.

� f : V ! V is a jump.

According to the above de�nition, a timed system can be obtained from an
untimed one by associating with each action a, a timed action b = (a; g; d; f).

De�nition 5. Semantics of timed systems
A state of a timed system is a pair (s; v), where s 2 S is a control state and
v 2 V . We associate with a timed system a transition relation !� (S � V) �
(A[R�0)�(S�V). Transitions labeled by elements of A are discrete transitions
while transitions labeled by non-negative reals are time steps .

Given s 2 S, if f(s; ai; si)gi2I is the set of all the untimed transitions issued
from s and h(s; ai; si) = (s; (ai; gi; di; fi); si) then:

{ 8i 2 I 8v 2 R�0 : (s; v)
ai! (si; fi(v)) if gi(v).

{ (s; v)
t
! (s; v + t) if 8t0 < t : cs(v + t0) where cs = :

W
i2I di.

Thus, time can progress at control state s, as long as no deadline of a transi-
tion from s becomes true. We call cs the time progress condition associated
with the control state s.

We consider timed systems such that for any control state s if the time
progress condition cs is right-closed then its falling edge is implied by the guard
of a transition from s.

The condition d) g guarantees that if time cannot progress at some state,
then some action is enabled from this state. Restriction to systems with an
enabled transition when a time progress condition is right-closed permits to
avoid deadlock situations in the case of transitions (s; (a; g; d; f); s0) such that
g = d. For instance, consider the case where d = g = x > 2, implying the time
progress condition x � 2, which is right-closed. Then, if x is initially 2, time
cannot progress by any time t, according to de�nition 5. The guard g is not
satis�ed either. Thus, the system is deadlocked. The assumptions above implies
the property of time reactivity , that is, time can progress at any state unless
some untimed transition is enabled. Throughout the paper this will be ensured
by only considering timed systems with left-closed guards and deadlines, and
operators that preserve time reactivity for these systems.

The semantics of a timed system is its associated transition relation modulo
strong bisimulation, usually called timed bisimulation.

De�nition 6. Timed bisimulation
Two states (s1; v1) and (s2; v2) are timed bisimilar if there exists a symmetric
relation � 2 (S � V)2 such that

((s1; v1); (s2; v2)) 2 � and (s1; v1)
�
! (s01; v

0
1) for some � 2 A [R�0 implies

(s2; v2)
�
! (s02; v

0
2) for some (s02; v

0
2) where ((s

0
1; v

0
1); (s

0
2; v

0
2)) 2 �.

We introduced timed systems as an abstraction of TAD [BS98] obtained
by relaxation of usual syntactical restrictions ensuring decidability. TAD can
be considered as a sub-class of time reactive timed automata [HNSY94] where
invariants associated with control states are replaced by deadlines.

The simplest timed system is a single transition labeled with the timed action
(a; g; d; f). The guard g characterizes the set of states from which the timed

transition is possible, while the deadline d characterizes the subset of these states
where the timed transition is enforced by stopping time progress. The relative
position of d within g determines the urgency of the action. For a given g, the
corresponding d may take two extreme values: d = g meaning that the action is
eager, and d = false, meaning that the action is lazy. A particularly interesting
case is the one of a delayable action where d = g # is the falling edge of a right-
closed guard g (cannot be disabled without enforcing the action). The di�erences
between urgency types are illustrated in �gure 1.

g

d = false

d = g #

d = g eager

delayable

lazy

Fig. 1. Using deadlines to specify urgency.

3 Choice Operators

3.1 The Algebra of Regular Processes

In this paragraph, we summarize basic results about the algebraic notation that
will be used throughout the paper [Mil89].

Consider the language of terms P (A) built from a constant Nil and a set
of variables V AR by using pre�xing by actions of a vocabulary A, choice and
recursion.

p ::= Nil j Z 2 V AR j a:p j p+ p j rec Z:p

We adopt the usual notion for free and bounded variables and guarded de�-
nition.

The terms of this language represent labeled transition systems on A. The
transition relation is the union of the least relations f

a
!ga2A such that

a:p
a
! p

p1
a
! p1

0 implies p1 + p2
a
! p1

0 and p2 + p1
a
! p1

0

p[rec Z:p=Z]
a
! p0 implies rec Z:p

a
! p0

where p[rec Z:p=Z] is the term obtained by substituting in p the free occurrences
of variable Z by rec Z:p.

The algebra of regular processes is the algebra of terms de�ned above modulo
the congruence induced by the following inference system, called strong congru-
ence.

p1 + p2 = p2 + p1 commutativity
(p1 + p2) + p3 = p1 + (p2 + p3) associativity
p+ p = p idempotence
p+Nil = p neutral element
p[rec Z:p=Z] = rec Z:p fixpoint

if p is well guarded p[p0=Z] = p0 implies rec Z:p = p0

Strong congruence agrees with strong bisimulation on labeled transition sys-
tems in the sense that strongly congruent terms represent strongly bisimilar
labeled transition systems.

A consequence of these results is that given (S;!; A) a labeled transition
system, it can be uniquely characterized modulo strong congruence by a set of
equations in bijection with the control states. If for some control state s the set
of the exiting transitions is f(s; ai; si)gi2I , then the corresponding equation is
Zs =

P
i2I ai:Zsi where

P
i2I ai:Zsi is taken to be Nil if I = ;.

3.2 Extension to Timed Systems

In the sequel, we consider timed systems as labeled transition systems on a set
of timed actions B = fbigi2I where bi = (ai; gi; di; fi) for some action ai 2 A,
guard gi, deadline di, jump fi. Equality of timed actions means equality of the
corresponding components that is b1 = b2 if a1 = a2, g1 = g2, d1 = d2, f1 = f2.

We use terms of P (B), regular processes on the vocabulary B, to represent
timed systems (S;!; A;X; h). To simplify notation, we use s 2 S to denote
the corresponding variable Zs and write s =

P
i2I bi:si for the characteristic

equation of s, where f(s; ai; si)gi2I is the set of the untimed transitions issued
from s such that h(s; ai; si) = bi.

Notice that strong congruence in this context is strong bisimilarity of the
control structure of timed systems. Another equivalence for the comparison of
terms (control states) is obtained by extending timed bisimulation.

De�nition 7. Timed bisimulation on terms
Two terms s1, s2 are said to be timed bisimilar if for any valuation v 2 V , the
states (s1; v) and (s2; v) are timed bisimilar.

As timed bisimulation on terms admits no simple syntactic characterization
(see �gure 2), we prefer working with strong congruence.

The following proposition can be shown by induction on the structure of the
terms. It guarantees that strong congruence on timed systems is compatible with
timed bisimulation.

Proposition 8. If two terms s1, s2 are strongly congruent then they are timed
bisimilar.

a1

y = 2

x; y := 0

a1

x = 2

a2 a3 a2

y = 2

y = 3

y = 3

x = 2

x; y := 0

s1 s01

Fig. 2. s1 and s01 are timed bisimilar but not strongly congruent

Throughout the paper, we represent timed systems by well-guarded terms of
P (B), of the form

P
i2I bi:si where I is �nite, modulo strong congruence.

3.3 Priority Choice

Motivation

When from a given state, several timed actions are enabled, it is often useful
to reduce non-determinism by using priorities on actions. Intuitively, applying
priority implies preventing low priority actions from being executed when higher
priority actions are enabled. This amounts to taking the non-deterministic choice
between the considered actions by adequately restricting the guards of the ac-
tions of lower priority.

Consider, for example, two timed transitions (s; (ai; gi; di; fi); si), for i = 1; 2,
with a common source control state s. If action a1 has lower priority than a2,
in the resulting timed system the transition labeled by a2 does not change while
the transition labeled by a1 would be of the form (s; (a1; g

0
1; d

0
1; r1); s1), where

g01) g1 and d01 = d1 ^ g01.

For untimed systems, g01 is usually taken to be g1 ^ :g2, which means that
whenever a1 and a2 are simultaneously enabled, a1 is disabled in the prioritized
choice. However, for timed systems other ways to de�ne g01 are possible. One
may want to prevent action a1 from being executed if it is established that a2
will be eventually executed within a given delay. We can take g01 = g1 ^ :3kg2
or even g01 = g1 ^ 2:g2. In the former case, a1 gives priority up to a2 if a2 is
eventually enabled within k time units. In the latter case, a1 is enabled only if
a2 is disabled forever.

De�nition and Results

For timed systems, priorities between actions can be parameterized by the
amount of time actions of lower priority leave precedence to actions of higher
priority. This motivates the following de�nition.

De�nition 9. Priority order
A priority order is a relation �� A� (R�0 [f1g)�A satisfying the following
properties, where a1 �k a2 stands for (a1; k; a2) 2�,

{ �k is a strict partial order for all k 2 R�0 [f1g
{ a1 �k a2 implies 8k0 < k: a1 �k0 a2
{ a1 �k a2 ^ a2 �l a3 implies a1 �k+l a3

Property : The relation a1 �� a2 = 9k a1 �k a2 is a strict partial order.

Proof. �� is irre
exive and transitive by de�nition. It is antisymmetric : if a1 �k

a2 then for every k0 � k, a1 �k0 a2 and since �0 is antisymmetric, a2 �0 a1 does
not hold; this implies that for any k0 2 R�0 [f1g, a2 �k0 a1 does not hold. 2

De�nition 10. Binary priority choice
For a given priority order �, let BI = fbigi2I and BJ = fbjgj2J denote sets of
timed actions with bl = (al; gl; dl; fl), for l 2 I [J . The operator b+ is a binary
operator on timed system de�ned by

(
P

i2I bi:si)b+(Pj2J bj :sj) = (
P

i2I(binBJ):si) + (
P

j2J (bjnBI):sj) with

binBJ = (ai; ginBJ ; dinBJ ; fi)
ginBJ = gi ^

V
(aj ;gj ;dj ;fj)2BJ ;ai�kaj

:3kgj
dinBJ = di ^ ginBJ = di ^

V
(aj ;gj ;dj ;fj)2BJ ;ai�kaj

:3kgj

and the bjnBI 's are de�ned in a similar manner.

Notice that b+ preserves strong congruence in the sense that if s1 = s01 then
s1b+s2 = s01b+s2. This de�nition introduces b+ as a macro-notation : any term
with priority choice can be expanded into a term with non-deterministic choice
(its meaning). The equality of terms with priority choice operators is the strong
congruence of their meanings.

From the above de�nition, it is clear that priority restrictions are applied
mutually with respect to actions that are not on the same side of the operatorb+.

Notice that if a1 �k a2 then in b1:s1b+bs:s2 = b1nfb2g:s1 + b2nfb1g:s2 =
b1nfb2g:s1 + b2:s2, a1 is disabled if a2 will be enabled within k time units.

Consider the guards g1, g2 of the actions a1; a2. Figure 3 gives the guard
g01 = g1nfb2g obtained when g1 is restricted by considering the priority orders
a1 �0 a2, a1 �1 a2, a1 �1 a2.

1 2 3 4 5 6 7 8 90

g1

g2

a1 �1 a2

a1 �1 a2

g1
0

g1
0

g1
0

a1 �0 a2

Fig. 3. The restricted guard g01 for di�erent degrees of priority

Lemma 11. For a timed action b and sets of timed actions B, B1, B2,

bnfbg [B = bnB
(bnB1)nB2 = bn(B1 [B2)

Proof. Let b = (a; g; d; f).
The �rst property results from the fact that priority orders are strict.
bnfbg [B = (a; gnfbg [B; dnfbg [B; f)
with

gnfbg [B = g ^
V

(ai;gi;di;fi)2fbg[B; a�kai
:3kgi

= g ^
V

(ai;gi;di;fi)2B; a�kai
:3kgi

= gnB

and
dnfbg [B = d ^ gnfbg [B = d ^ gnB = dnB

That is, bnfbg [B = bnB.

For the second property , we have by direct application of de�nition 5 :

(bnB1)nB2 = (a; gnB1; dnB1; f)nB2 = (a; (gnB1)nB2; (dnB1)nB2; f)

Let us compute (gnB1)nB2 :

(gnB1)nB2 = (g ^
V

(ai;gi;di;fi)2B1; a�kai
:3kgi)nB2

= (g ^
V

(ai;gi;di;fi)2B1; a�kai
:3kgi)

^
V

(ai;gi;di;fi)2B2; a�kai
:3kgi

= g ^
V

(ai;gi;di;fi)2B1[B2; a�kai
:3kgi

= gn(B1 [B2)

This implies

(dnB1)nB2 = (d ^ gnB1)nB2 = (d ^ gnB1) ^ (gnB1)nB2

= d ^ gn(B1 [B2) = dn(B1 [B2)

2

It will be shown that the operator b+ is commutative and Nil is the neutral
element. Notice that b+ is not distributive with respect to + :

(b1:s1 + b2:s2)b+b3:s3 6= (b1:s1b+b3:s3) + (b2:s2b+b3:s3) equivalent to
b1nfb3g:s1+ b2nfb3g:s2 + b3nfb1; b2g:s3 6=

b1nfb3g:s1 + b2nfb3g:s2 + b3nfb1g:s3 + b3nfb2g:s3

In fact, if a3 (the label of b3) is the action with the lowest priority then in (b1:s1+
b2:s2)b+b3:s3, b3 is restricted jointly by both b1 and b2 , while in (b1:s1b+b3:s3) +
(b2:s2b+b3:s3), b3 is restricted separately by b1 and b2. In the latter case a3 cannot
be executed when both a1 and a2 are enabled while in the former case a3 cannot
be executed when either a1 or a2 is enabled.

However , b+ is associative as it will be shown in proposition 13. Associativity
is an important property which is satis�ed due to the adequate de�nition of
priority orders. In particular, the transitivity property is crucial for achieving
associativity, as it is shown by the following example.

Example 12. Consider the timed terms p = (b1:s1b+b2:s2)b+b3:s3 and
q = b1:s1b+(b2:s2b+b3:s3) with bi = (ai; gi; di; fi), i = 1; 2; 3. Suppose that a1 �10

a2 and a2 �10 a3 and that a1 �d a3 for some d 2 R�0.

Then p and q are respectively equivalent to

p = (b1nfb2g)nfb3g:s1 + b2nfb3g:s2 + b3:s3
q = b1nfb2nfb3g; b3g:s1 + b2nfb3g:s2 + b3:s3

For b+ to be associative, the guard g01 of (b1nfb2g)nfb3g, g
0
1 = g1^:310g2^:3dg3,

and the guard g001 of b1nfb2nfb3g; b3g, g001 = g1^:310(g2^:310g3)^:3dg3 must
be equivalent.

Clearly g01) g001 . Suppose that g
00
1 is true at some valuation v and that d < 20.

In that case, it is possible that :310(g2 ^ :310g3)(v) while 310g2(v), as it is
shown in �gure 4. On the contrary, if d � 20 (the transitivity axiom is satis�ed)
then :3dg3 implies that :310(g2 ^ :310g3) is equivalent to :310g2.

Proposition 13. The binary priority operator is associative i.e., for timed ac-
tions bi = (ai; gi; di; fi),

((
P

i2I bi:si)b+(Pj2J bj :sj)) b+(Pk2K bk:sk) =

(
P

i2I bi:si)b+((Pj2J bj :sj)b+(Pk2K bk:sk)

v v + 10

v + t

v + 20v + d

:g3

:g2
� 10

g3

Fig. 4. Case d < 20

Proof. We denote by BI , BJ and BK respectively the three sets fbigi2I , fbjgj2J
and fbkgk2K . We have to show the three following equalities :

8i 2 I: (binBJ)nBK = bin(fbjnBKgj2J [fbknBJgk2K)
8j 2 J: (bjnBI)nBK = (bjnBK)nBI

8k 2 K: bkn(fbinBJgi2I [fbjnBIgj2J) = (bknBJ)nBI

Due to the lemma this is equivalent to

8i 2 I: bin(BJ [BK) = bin(fbjnBKgj2J [fbknBJgk2K)
8k 2 K: bkn(BJ [BI) = bkn(fbjnBIgj2J [fbinBJgi2I)

It is then su�cient to show that :

8i 2 I: gin(BJ [BK) = gin(fbjnBKgj2J [fbknBJgk2K)

By de�nition of gnB, this equality can be reduced to

V
j2J; ai�lij

aj
:3lij (gjnBK) ^

V
k2K; ai�lik

ak
:3lik(gknBJ)

=
V
j2J; ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk

for every i in I.

For a given i, we will now prove this by induction on the cardinality of J [K.

{ The case card(J [K) = 1 is trivial and left to the reader.
{ Let us suppose that the property holds for all J 0 and K 0 such that card(J 0[
K 0) = n,

V
j2J0; ai�lij

aj
:3lij (gjnBK0) ^

V
k2K0; ai�lik

ak
:3lik(gknBJ0)

=
V
j2J0; ai�lij

aj
:3lijgj ^

V
k2K0; ai�lik

ak
:3likgk:

We will now show that this holds for all J and K such that card(J [K) =
n+ 1.
Let a be an action of least priority in J [K : 8j 2 J [K; :(aj �� a)
If a has no priority over ai, then the property to prove is identical to the

assumption. Let us suppose that a has priority over ai, and (without loss of
generality) that it appears in J : a = aj0 . The property to be shown is then

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V
k2K; ai�lik

ak
:3lik(gknBJ)

= :3lij0
gj0 ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk:

Since aj0 has the least priority in J [K, we know that :

8k 2 K: gknBJ = gkn(BJnfbj0g)

We can use the induction hypothesis on (Jnfj0g) [K :

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V
k2K; ai�lik

ak
:3lik(gkn(BJnfbj0g))

= (:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk:

Since 3k is distributive with respect to disjunction and since 3l3kg =
3l+kg, we have :

V
k2K; ai�lik

ak
:3likgk =

V
k2K; ai�lik

ak
:3lij0

3lj0k
gk

= :3lij0

W
k2K; ai�lik

ak
3lj0k

gk

= :3lij0

W
k2K; aj0�lij0

ak
3lj0k

gk

Let us take G =
W
k2K; aj0�lij0

ak
3lj0k

gk. Then, the following holds :

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V
k2K; ai�lik

ak
:3lik(gkn(BJnfbj0g))

= (:3lij0
(gj0 ^ :G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^ :3lij0

G

= (:3lij0
((gj0 ^ :G) _G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= (:3lij0
(gj0 _G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= (:3lij0
gj0) ^ :3lij0

G ^
V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= :3lij0
gj0 ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk

QED.

2

The above proposition allows the de�nition of a n-ary priority choice opera-

tor. We denote bycPi2Ibi:si the term obtained by combining the terms fbi:sigi2I
by means of b+.
De�nition 14. Let bP (B) be the set of the well-guarded terms built from Nil
and a set of variables VAR by using pre�xing by timed actions of B, priority
choice and recursion.

Proposition 15. On bP (B), the priority choice operator b+ is commutative, as-
sociative, idempotent and Nil is the neutral element.

Proof. Directly from the de�nition, b+ is commutative and Nil is the neutral
element. It is also associative from the previous proposition. It is trivial that
pb+p = p for all term of the form p = b:s, for some timed action b and some term
s. By associativity of b+, this equality can be generalized to all terms p, that is,b+ is idempotent. 2

This result allows to consider b+ not only as a macro-notation but also as a
basic operator.

The following two propositions deal with the correspondence between bP (B)
and P (B) ant its properties.

Proposition 16. Reduction to non-deterministic choice
For any �nite set of terms fbi:sigi2I with bi = (ai; gi; di; fi)

[

X
i2I

bi:si =
X
i2I

b0i:si

with b0i = (ai; g
0
i; d

0
i; fi), g

0
i = gi ^

V
ai�kaj

:3kgj and d0i = di ^ g0i. That is

b0i = binfbjgj2I .

Proof. The result is immediate by induction on I, with the help of the two
previous propositions. But we need also to verify that time reactivity is preserved
when priority choice operators are applied to systems with left-closed deadlines.
We only have to check that when by restriction of some guard a left-open deadline
is obtained then the rising edge of the deadline is implied by a guard of some
action of higher priority. This also is immediate by induction on I since, by
de�nition, a deadline can only be restricted to the left if it intersects the guard
of an action of higher priority. 2

Proposition 17. Activity preservation

If cP
i2Ibi:si =

P
i2I b

0
i:si as in proposition 16, then the following properties hold

between the guards gi of bi and the restricted guards g0i of b
0
i.

1. 3gi) 3(g0i _
W
ai��aj

g0j), for any i 2 I

2. 3
W
i2I gi = 3

W
i2I g

0
i

Proof. The proof of the second property is a direct application of associativity
of b+. Let us consider a timed action b = (a; g; d; f) with in�nitely less priority
than all actions in I (8i 2 I: a �1 ai) and a maximal guard (g = true). We
have

b:sb+[X
i2I

bi:si = b:sb+X
i2I

b0i:si

by application of proposition 16. The restricted guard g0 of b is g0 = truenfb0igi2I =
truenfbigi2I which can be written g0 =

V
i2I :3g

0
i =
V
i2I :3gi and gives the

result.

The �rst property is obtained by considering in the previous example instead

of cP
i2Ibi:si the term bi:sib+cPj2I;ai��aj

bj :sj for a given i 2 I.

b:sb+(bi:sib+ \
X

j2I;ai��aj

bj :sj) = b:sb+(b0i:si +
X

j2I;ai��aj

b0j :sj)

The guards of b in the two terms are equal. We obtain 3(gi _
W
ai��aj

gj) =

3(g0i_
W
ai��aj

g0j). Notice that the restricted guards g
0
i and g

0
j , for j 2 I; ai �� aj

are the same as the guards of b0i and b0j for j 2 I; ai �� aj in
P

i2I bi:si. The
property follows immediately. 2

The �rst property means that if action ai can occur in the non-prioritized
choice then either ai can occur in the prioritized choice or some action of higher
priority.

The second property simply says that cP preserves activity of components : if
some action can be executed in the non-prioritized choice then some action can
be executed in the prioritized choice and vice versa.

4 Parallel Composition

The results of this section show that non-deterministic choice is a special case
of priority choice when the priority order is empty. Priority choice is actually a
generalization of non-deterministic choice and for this reason we consider it as
the choice operator, in the sequel. This allows to describe behaviors depending
on a priority order. More precisely, given a priority order � on a set of actions
A, and the corresponding set of timed actions B, we will only consider terms of
the associated language bP (B).

In this section, we propose a general method for the de�nition of parallel
composition operators for timed systems as an extension of parallel composition
for untimed systems.

4.1 Parallel composition of untimed systems

We consider that for parallel composition of untimed terms the following frame-
work is given.

{ The action vocabulary A is provided with an operator p such that (A; p) is
a commutative semi-group with a distinguished absorbing element ? 2 A.
Words of this monoid represent the action resulting from the synchronization
of their elements. The absorbing element ? means impossibility of synchro-
nization.

{ A parallel composition operator k on terms which is supposed to be associa-
tive, commutative, has Nil as neutral element and is de�ned by an expansion

rule of the form:

If p1 =
P

i2J ai:si and p2 =
P

j2J aj :sj then

p1 kp2 =
X
i2I0

ai:(si kp2) +
X
j2J0

aj :(sj kp1) +
X

(i;j)2I�J

aipaj :(si ksj) (�)

where I 0 and J 0 are subsets of I and J respectively.

The �rst two summands correspond to behaviors starting with interleav-
ing actions. The sets of interleaving actions may be empty, depending on
the semantics of k. The third summand contains terms with synchronization
transitions where only terms such that aipaj 6= ? appear.

When such a parallel composition operator is used to compose sequential
systems, it is important to combine interleaving and synchronization so as to
satisfy two often con
icting requirements:

{ activity preservation, that is, if in one of the components some action is
enabled, then in the product some action is enabled too.

{ maximal progress, that is, when in the product both synchronization and
interleaving transitions are enabled, synchronization is taken.

Clearly, it is easy to satisfy each requirement separately.

{ If all the actions interleave (I = I 0; J = J 0 in the expansion rule) then ac-
tivity is preserved. However, in this case to achieve maximal progress the
description language should provide with mechanisms for eliminating dy-
namically all the interleaving transitions that are systematically introduced.
This is the approach adopted in languages such as CCS [Mil89] where all the
actions interleave and a global restriction operator is often applied to prune
o� interleaving transitions.

{ Maximal progress can be easily achieved by not allowing interleaving of
actions that must synchronize. However, in this case there is an obvious
risk of deadlock when the synchronization actions do not match. This point
of view is adopted in languages such as CSP [Hoa85], where actions are
partitioned into two classes, synchronizing and interleaving actions.

We show that for timed systems a parallel composition operation can be
de�ned preserving process activity and maximal progress due to the possibility
of controlling waiting times by means of priority choice operators.

4.2 Parallel composition of timed systems

We extend the parallel composition operator k to timed systems in the following
manner:

extension of p We assume that the operator p can be extended component-
wise on the set B of timed actions b of the form (a; g; d; f) where a 2 A, in
such a manner that (B; p) is a commutative semi-group with a distinguished
absorbing element ?. We take (?; g; d; f) = ? for any g, d, and f .
As ambiguity is resolved by the context, for sake of simplicity, we overload
the notation for p and ?.

extension of the priority order If � is a priority order on A we suppose that
it is preserved by p

8a1; a2; a3 2 A : a1 �k a2 implies a1pa3 �k a2pa3

extension of k The parallel composition operatork for timed systems is de�ned
by extending the expansion rule (�) to timed terms, where bi is the timed
action associated with ai.

If p1 =
[

X
i2I

bi:si and p2 =
[

X
j2J

bj :sj then

p1 kp2 =
[

X
i2I0

bi:(si kp2) b+[
X
j2J0

bj :(p1 ksj) b+\
X

(i;j)2I�J

bipbj :(si ksj)

Proposition 18. The parallel composition operator k de�ned above is associa-
tive, commutative, distributive with respect to b+ and has Nil as neutral element.

Proof. The proof is standard and similar to the one given in [Mil83]. It is based
on the uniqueness of solution of well-guarded equations and on properties of b+.
2

Proposition 19. If all the actions interleave then k preserves activity. That is,
if gi are the guards of bi, i 2 I [J , in the expansion rule, g0i are the restricted
guards of the interleaving actions, i 2 I [J and gij are the guards of bipbj,
(i; j) 2 I � J , then

3gi) 3(g0i _
W
j2J gij)

3(
W
i2I gi _

W
j2J gj) = 3(

W
i2I g

0
i _
W
j2J g

0
j _
W
i;j2I�J gij)

Proof. If in the expansion rule priority choice is replaced by non-deterministic
choice, activity is trivially preserved due to the presence of interleaving actions.
Proposition 17 says that replacing non-deterministic choice by priority choice
preserves activity. 2

This proposition guarantees activity preservation. If some action is possible
in a component, then in the product, either this action can interleave or it can
participate to a synchronization.

To achieve maximal progress in the expansion rule, it is su�cient to consider
the priority order which gives in�nite priority to synchronizations :

8a1; a2 2 A : a1pa2 6= ? implies a1 �1 a1pa2 and a2 �1 a1pa2

a1 a1a2 a2

a1pa2

x = k1 ^ y > k2

a. The components b. No interleaving

c. Interleaving without priorities d. Interleaving and priorities

x = k1

x = k1

a1 a2

a1pa2 a1pa2

x = k1 ^ y � k2 x = k1 ^ y � k2

y � k2 x = k1 ^ y � k2

y � k2
y � k2 ^ x > k1

s01 k s02

s1 k s2s1 k s2

s01 k s02

s01 s02

s1 s2 s1 k s2

s01 k s02

Fig. 5. Parallel composition

Example 20. Consider b1:s1 k b2:s2 with bi = (ai; gi; di; id) such that a1pa2 6= ?,
g1 = (x = k1), g2 = (y � k2) and the synchronization guard is g1pg2 = g1 ^ g2.

If a1 and a2 do not interleave, then b1:s1 k b2:s2 = (b1pb2)(s1 k s2). We have
maximal progress but if we start from states such that :3((x = k1)^ (y � k2)),
we have a deadlock (�gure 5b).

If actions a1 and a2 interleave and there is no priority between a1pa2 and
these actions, then activity is preserved but either of the interleaving actions
can be taken when synchronization is possible (�gure 5c).

Finally, if actions a1 and a2 interleave and a1 �1 a1pa2, a2 �1 a1pa2 then ac-
tivity is preserved due to proposition 19. Furthermore, we have maximal progress
because the guards of the interleaving actions are respectively g1 ^ :3(g1 ^ g2)
and g2 ^ :3(g1 ^ g2), which means that they can be taken only if the synchro-
nization is disabled forever.

5 The Algebraic Framework

In this section we develop an algebraic framework for the speci�cation of timed
systems which takes into account the structure of timed actions. We study a
simple algebra for the composition of timed actions and deduce two classes of
laws for terms. The �rst class contains laws modulo strong congruence, resulting
from the properties of priority choice and the de�nition of parallel composition
operators. The second class contains laws re
ecting properties of timed actions
and preserving timed bisimulation,

5.1 Composition of Guards and Deadlines

We show how the commutative semi-group (B; p) can be de�ned.
Assume that the composition of timed actions bi = (ai; gi; di; fi); i = 1; 2, is a

timed action of the form b1pb2 = (a1pa2; g1pg2; d1pd2; f1pf2). For sake of simplicity
we use the same notation, p , to denote the composition of timed actions, actions,
guards, deadlines and jumps.

{ For the composition of the guards, we suppose that the guard g1pg2 is de�ned
as a monotonic function of g1 and g2 called synchronization mode, of the
general form

g1pg2 = (g1 ^m(g2)) _ (m(g1) ^ g2)

where m is a function such that:
� 8g : g) m(g)
� 8g; g0 : m(g _ g0) = m(g) _m(g0)
� 8g; g0 : m(gpg0) = m(g) ^m(g0)

{ For a given synchronization guard g1pg2, the associated deadline d1pd2 must
be such that d1pd2) g1pg2, to preserve time reactivity. On the other hand,
it is desirable to preserve urgency which means d1pd2) d1_d2. For maximal
urgency and time reactivity we take d1pd2 = (g1pg2)^ (d1 _ d2). Notice that

this is su�cient to ensure time reactivity when g1pg2 is left-closed since the
deadline d1pd2 is then left-closed. This is the case for the four synchronization
modes considered below.

{ The de�nition of f1pf2 does not pose particular problems. An associative
and commutative operator p can be de�ned on jumps (consider for instance,
the easy case where synchronizing actions transform disjoint state spaces).

Proposition 21. For guards g1, g2 and p synchronization mode,

g1pg2 = g2pg1
(g1pg2)pg3 = g1p(g2pg3)

(g1 _ g2)pg3 = (g1pg3) _ (g2pg3)

g1 ^ g2) g1pg2) g1 _ g2

Proof. Commutativity of p follows directly from its de�nition.
Associativity is a simple application of the de�nition and the properties of m :

(g1pg2)pg3 = m(g1pg2) ^ g3 _ (g1pg2) ^m(g3)
= m(g1) ^m(g2) ^ g3 _m(g1) ^ g2 ^m(g3) _ g1 ^m(g2) ^m(g3)

Due to commutativity of p, this is equal to g1p(g2pg3).
Distributivity with respect to disjunction is obtained by :

(g1 _ g2)pg3 = m(g1 _ g2) ^ g3 _ (g1 _ g2) ^m(g3)
= (m(g1) _m(g2)) ^ g3 _ g1 ^m(g3) _ g2 ^m(g3)
= (m(g1) ^ g3 _ g1 ^m(g3)) _ (m(g2) ^ g3 _ g2 ^m(g3))

= (g1pg3) _ (g2pg3)

The last property is derived from g1) m(g1) and g2) m(g2), knowing that
g1pg2 = m(g1) ^ g2 _ g1 ^m(g2) :

g1 ^ g2 _ g1 ^ g2) g1pg2

Moreover g1 ^m(g2)) g1 and g2 ^m(g1)) g2 imply :

g1pg2) g1 _ g2

2

The above properties imply that synchronization may occur only if at least
one of the synchronizing actions is enabled. Furthermore, if both synchronizing
actions are enabled at a state then synchronization is enabled. Distributivity of
the composition of guards with respect to disjunction is an important property
as parallel composition distributes over choice operator. More precisely, if TS0

is the timed system TS where we replace a transition s
(a;g;d;f)
�! s0 by the two

transitions s
(a;g1;d1;f)
�! s0 and s

(a;g2;d2;f)
�! s0 such that g = g1 _ g2 et d = d1 _ d2

we would like that the parallel composition of TS and TS0 with another timed
system yields timed bisimilar systems.

In previous papers [BST97] we use the following synchronization modes for
their practical interest:

{ and-synchronization where g1pg2 = g1and g2 = g1 ^ g2.
{ max-synchronization where g1pg2 = g1max g2 = (3- g1 ^ g2)_ (g1 ^3- g2).
This condition characterizes synchronization with waiting.

{ min-synchronization where g1pg2 = g1min g2 = (3g1 ^ g2) _ (g1 ^ 3g2).
This condition characterizes synchronization by anticipation, in the sense
that synchronization occurs when one of the two actions is enabled provided
that the other will be enabled in the future.

{ or-synchronization where g1pg2 = g1or g2 = g1 _ g2

It is trivial to check that the above functions are indeed synchronization modes.

5.2 Laws for Extended Guards

We call extended guard any pair of predicates G = (g; d) such that d) g.
We extend the equivalence on predicates to equivalence on extended guards :
(g1; d1) = (g2; d2) if g1 = g2 and d1 = d2.

IfGi = (gi; di), for i = 1; 2, are two extended guards and p is a synchronization
mode, we take G1pG2 = (g1pg2; g1pg2 ^ (d1 _ d2)).

Proposition 22. If g1pg2 = (g1 ^m(g2)) _ (m(g1) ^ g2) and Gi = (gi; di), for
i = 1; 2, then G1pG2 = (g1pg2; (d1 ^m(g2)) _ (m(g1) ^ d2)).

Proof. By de�nition, G1pG2 = (g1pg2; (g1pg2)^(d1_d2)). Compute the deadline :

(g1pg2) ^ (d1 _ d2) = (m(g1) ^ g2 _ g1 ^m(g2)) ^ (d1 _ d2)

Since d) g) m(g) for any extended guard (g; d), this can be reduced to :

(g1pg2) ^ (d1 _ d2) = d1 ^ g2 _ d1 ^m(g2) _m(g1) ^ d2 _ g1 ^ d2
= d1 ^m(g2) _m(g1) ^ d2

2

This proposition says that the deadline of the synchronization guard has
the same form as the synchronization guard. The following are useful laws that
follow as a direct application of the proposition for Gi = (gi; di), i = 1; 2.

G1and G2 = (g1 ^ g2; d1 ^ g2 _ g1 ^ d2)
G1or G2 = (g1 _ g2; d1 _ d2)
G1max G2 = (g1max g2; (d1 ^3- g2) _ (3- g1 ^ g2))
G1min G2 = (g1min g2; (d1 ^3g2) _ (3g1 ^ g2))

Proposition 23. For extended guards Gi = (gi; di), i = 1; 2; 3, and p a synchro-
nization mode, the following laws hold

(G1pG2) = (G2pG1)
(G1pG2)pG3 = G1p(G2pG3)
(G1or G2)pG3 = (G1pG3)or (G2pG3)

Proof. From the previous proposition, Commutativity trivially follows.
Let us prove associativity. Remember that by de�nition ofm,m(g1pg2) = m(g1)^
m(g2). We have :

(G1pG2)pG3 = ((g1pg2);m(g1) ^ d2 _ d1 ^m(g2))p(g3; d3)
= ((g1pg2)pg3;m(g1pg2) ^ d3_
(m(g1) ^ d2 _ d1 ^m(g2)) ^m(g3))

= ((g1pg2)pg3;m(g1) ^m(g2) ^ d3
_m(g1) ^ d2 ^m(g3) _ d1 ^m(g2) ^m(g3))

As the operator p is associative on guards, this is equal to G1p(G2pG3).
The last equality is derived from the de�nitions :

(G1or G2)pG3 = (g1 _ g2; d1 _ d2)p(g3; d3)
= ((g1 _ g2)pg3;m(g1 _ g2) ^ d3 _ (d1 _ d2) ^m(g3)
= ((g1pg3) _ (g2pg3);
m(g1) ^ d3 _m(g2) ^ d3 _ d1 ^m(g3) _ d2 ^m(g3)

= (g1pg3;m(g1) ^ d3 _ d1 ^m(g3))or
(g2pg3;m(g2) ^ d3 _ d2 ^m(g3))

= (G1pG3)or (G2pG3)

2

Notice that any expression involving extended guards and synchronization
modes can be reduced to an equivalent extended guard.

5.3 Laws for Timed Actions

We naturally lift the structure of extended guards to timed actions b = (a;G; f).
For bi = (ai; Gi; fi); i = 1; 2, we take

{ (a1; G1; f1) = (a2; G2; f2) if a1 = a2, G1 = G2 and f1 = f2.
{ ? = (?; G; f)

Proposition 24. Let B be a set of timed actions on a vocabulary A as in para-
graph 4.2. (B; p) is a commutative semi-group with absorbing element ? where
b1pb2 = (a1pa2; G1pG2; f1pf2), for bi = (ai; Gi; fi), i = 1; 2, and p is a given
synchronization mode in G1pG2.

Proof. From the above de�nitions and proposition 23, it follows that p is as-
sociative and commutative on each component of the timed actions. So it is
commutative and associative on timed actions. Moreover, the timed action ?
inherits the absorption property of the action ?. 2

The above proposition holds for a given synchronization mode. It can be eas-
ily extended to allow composition of timed actions with di�erent synchronization
modes under the following conditions.

Suppose that a partial function � is given from A into the set of modes. If � is
de�ned for a 2 A, �(a) denotes the synchronization mode associated with a. We
require that actions with di�erent synchronization modes cannot synchronize,
that is, �(a1) 6= �(a2) implies a1pa2 = ?.

It is easy to check that (B; p) with b1pb2 = (a1pa2; G1�(a1)G2; f1pf2) is a
commutative semi-group with ? as absorbing element. We consider in the sequel,
that parallel composition of timed systems is de�ned in terms of such a general
synchronization function.

5.4 Laws for Timed Systems

Proposition 25. The congruence induced by the following laws on timed sys-
tems on (B; p) is compatible with timed bisimulation, i.e. if two terms are con-
gruent then they are timed bisimilar.

{ b+ is associative, commutative, idempotent, and Nil is the neutral element.

{ k is associative, commutative, distributive with respect to b+, and Nil is the
neutral element.

{ ?:s = Nil

{ (a;G1or G2; f):s = (a;G1; f):sb+(a;G2; f):s (which means that any timed
transition is equivalent to two timed transitions with the same label and jump,
and such that the disjunction of their guards is equal to its guard)

{ if all actions interleave and b is such that bpbj = ? for any timed action bj
in B then

b:sb+[X
i2I

bi:si = bnfbigi2I :sb+[
X
i2I

bi:si

Proof. The proof is carried into two steps. The �rst step consists in checking
that the laws are compatible with timed bisimulation; this is trivial and left to
the reader. The second step consists in checking that the induced congruence is
compatible with timed bisimulation, that is if t1 = t01 and t2 = t02, due to one
of the laws, then t1b+t2 and t1 k t2 are respectively timed bisimilar to t01b+t02 and
t01 k t

0
2. Using the fact that we consider equivalences, we will only show that if

t1 = t2, then for any timed system t, t1b+t is timed bisimilar to t2b+t and t1 k t
is timed bisimilar to t2 k t.

If t1 = t2 then due to properties of b+ or k this property holds (see properties
in sections 3 and 4, respectively).

For, the rest of the laws, it is trivial to check that if t1 = t2 then for any
t, t1b+t is timed bisimilar to t2b+t. It is also easy to check that for any s and t,
?:s k t is timed bisimilar to Nil k t (which is equal to t), and if b1 = b2 then
b1:s k t is timed bisimilar to b2:s k t. We will only consider the last two cases.

Knowing that (a;G1or G2; f):s = (a;G1; f):sb+(a;G2; f):s, consider the term

(a;G1or G2; f):s k p with p = cP
i2Ibi:si and bi = (ai; Gi; fi), i 2 I. From

properties of parallel composition and choice operator we have

(a;G1or G2; f):s k p = (a;G1or G2; f):(s k p)b+cPi2Ibi:((a;G1or G2; f):s k si)b+cP
i2I(a;G1or G2; f)pbi:(s k si)

= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP
i2Ibi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1or G2)pGi; f pfi):(s k si)
= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP

i2Ibi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1pGi)or (G2pGi); f pfi):(s k si)
= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP

i2Ibi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1pGi); f pfi):(s k si)b+cP
i2I(apai; (G2pGi); f pfi):(s k si):

For ((a;G1; f):sb+(a;G2; f):s) k p we get the same terms with the di�erence that
in the second summand (a;G1or G2; f):s is replaced by (a;G1; f):sb+(a;G2; f):s.
The rest of the proof is standard and closely follows techniques given [Mil83,Mil89]
by using uniqueness of the solution of well-guarded equations modulo strong con-
gruence.

Suppose now that all action interleave and b does not synchronize (for any

bj 2 B, bpbj = ?). Consider the term (bnfbigi2I :sb+cPi2Ibi:si) k p with p =
cP

j2Jbj :sj . We have :

(bnfbigi2I :s b+cPi2I
bi:si) k p

= bnfbigi2I :(s k p)b+cPi2I
bi:(si k p)

b+cP
j2J

bj :((bnfbigi2I b+cPi2I
bi:si) k sj)

b+cP
j2J

(bnfbigi2I)pbj :(s k sj)b+cPi;j2I�J
(bipbj):(si k sj)

= b:(s k p)b+cP
i2Ibi:(si k p)b+c

P
j2Jbj :((bnfbigi2I b+c

P
i2Ibi:si) k sj)b+cP

j2J?:(s k sj)b+c
P

i;j2I�J (bipbj):(si k sj):

For (bb+cP
i2I

bi:si) k p we get the same terms with the di�erence that in the

third summand bnfbigi2I :sb+cPi2I
bi:si is replaced by bb+cP

i2I
bi:si, and we can

conclude as in the previous case. 2.

5.5 Typed Timed Actions

Given an extended guard G = (g; d), it can be decomposed into G = (g ^
:d; false)or (d; d). That is, any extended guard can be expressed as the dis-
junction of one lazy and one eager guard. This remark motivates the de�nition
of typed guards. If g is a guard, we write g� and g� to denote respectively,
g� = (g; false) and g� = (g; g).

Proposition 26. For � 2 f�; �g and a synchronization mode g1pg2 = g1 ^
m(g2) _m(g1) ^ g2,

{ g�1 pg�2 = (g1pg2)
�

{ g�1or g�2 = g�1or (g2 ^ :g1)�

{ g�1pg
�
2 = (g1 ^m(g2))

�or (m(g1) ^ g2)
�

Proof. { Let us show that g�1 pg�2 = (g1pg2)
�, for � 2 f�; �g.

g�1pg
�
2 = (g1pg2;m(g1) ^ g2 _ g1 ^m(g2))
= (g1pg2; g1pg2) = (g1pg2)

�

g�1 pg�2 = (g1pg2;m(g1) ^ false _ false ^ g2)

= (g1pg2; false) = (g1pg2)
�

{ g�1or g�2 = (g1 _ g2; g1) = (g1; g1)or (g2 ^ :g1; false) = g�1or (g2 ^ :g1)
�

{ By applying the de�nitions :

g�1pg
�
2 = (m(g1) ^ g2 _ g1 ^m(g2); xm(g1) ^ false _ g1 ^m(g2))
= (m(g1) ^ g2; false)or (g1 ^m(g2); g1 ^m(g2))
= (g1 ^m(g2))

�or (m(g1) ^ g2)
�

2

A consequence of the above results is that any expression built from typed
guards by using synchronization modes can be reduced to an expression which
is the or of eager and lazy guards.

It is often useful to de�ne a type of delayable guards denoted by �. We take
g� = g�or g #�, where g # is the falling edge of a right-closed guard g.

Proposition 27. Any expression involving delayable guards and the synchro-
nization modes and, max, min, or, can be reduced into an expression which the
or of delayable guards.

g�1and g�2 = (g1 ^ g2)
�

g�1max g�2 = (g1 ^3- g2)
�or (3- g1 ^ g2)

�

g�1min g�2 = (g1 ^3g2)�or (3g1 ^ g2)
�

Proof. We will use the properties of the falling edge operator to prove this result.
Namely, (g1 ^ g2) #= g1 ^ g2 # _g1 # ^g2, (3- g) #= false and (3g) #) g #.

{ For and , we have m(g) = g.

g�1and g�2 = (g1; g1 #)and (g2; g2 #)
= (g1 ^ g2; g1 ^ g2 # _g1 # ^g2)
= (g1 ^ g2; (g1 ^ g2) #)
= (g1 ^ g2)

�

{ For max , we have m(g) = 3- g.

g�1max g�2 = (g1; g1 #)max (g2; g2 #)
= (3- g1 ^ g2 _ g1 ^3- g2;3- g1 ^ g2 # _g1 # ^3- g2)
= (3- g1 ^ g2;3- g1 ^ g2 #)or (g1 ^3- g2; g1 # ^3- g2)
= (3- g1 ^ g2; (3- g1 ^ g2) #)or (g1 ^3- g2; (g1 ^3- g2) #)
= (3- g1 ^ g2)

�or (g1 ^3- g2)�

{ For min , we have m(g) = 3g.

g�1min g�2 = (g1; g1 #)min (g2; g2 #)
= (3g1 ^ g2 _ g1 ^3g2;3g1 ^ g2 # _g1 # ^3g2)

From (3g1) #) g1 # and g2) 3g2, it follows that (3g1) # ^g2) g1 # ^3g2
and symmetrically (3g2) # ^g1) g2 # ^3g1. The previous equality can be
rewritten :

g�1min g�2 = (3g1 ^ g2 _ g1 ^3g2;
3g1 ^ g2 # _g1 # ^3g2 _ (3g1) # ^g2 _ g1 ^ (3g2) #)

= (3g1 ^ g2;3g1 ^ g2 # _(3g1) # ^g2)
or (g1 ^3g2; g1 # ^3g2 _ g1 ^ (3g2) #)

= (3g1 ^ g2)
�or (g1 ^3g2)�

2

Using typed timed actions, drastically simpli�es the general model. Notice
that many timed models e.g., timed Petri nets, adopt delayable semantics for
their guards.

6 Examples

We provide two examples illustrating the use of priority choice and synchroniza-
tion modes to compositionally specify systems. The �rst example shows how
priorities can be used to achieve mutual exclusion. The second illustrates the
compositional description of a tra�c light controller for tramways crossing by
using min and max synchronizations.

6.1 Mutual exclusion

Consider a family of periodic processes sharing in mutual exclusion a common
resource. The i-th process has period Ti and goes successively through three
control states wi (wait), ei (execute), si (sleep). We suppose that execution ei
takes Ei time units. A process is represented as a timed system with actions ai
(awake), pi (proceed), ri (release). Two clocks ti and xi are used respectively
to enforce the period and the execution time. In �gure 6 we represent two such
processes. The constant Di is taken Di = Ti � Ei. The transition from wi to ei

Process 1

a1

w1

e1

s1

(t1 = T1)
�

t1 := 0
p1

r1

(t1 � D1)
�

x1 := 0

(x1 = E1)
�

t2 := 0

Process 2

(t2 � D2)
�

(x2 = E2)
�

a2

s2

e2

w2

p2

r2

(t2 = T2)
�

x2 := 0

f

A semaphore

(true)� (true)�

r

b

p

Fig. 6. Mutual exclusion for two processes

is taken to be eager so that no time is wasted when a component is ready to
enter the critical section ei.

We want to construct a scheduler guaranteeing mutual exclusion for execu-
tion. A classical solution consists in restricting the behavior of the processes
by a semaphore with two actions p and r by taking pipp 6= ?, ripr 6= ? and
�(pi) = �(p) = �(ri) = �(r) = and .

An equivalent solution can be obtained by simply imposing priorities be-
tween actions. Consider that pi �1 rj for any pair (i; j); i 6= j and take the
interleaving product of the processes. It can be shown that if mutual exclusion is
respected in the initial state, then it is preserved forever. Consider for instance,
the interleaving product of the processes 1 and 2 under this priority restriction
shown in �gure 7. It is easy to check that due to priorities, the actions p1 and
p2 will never be enabled from control states e1w2 and w1e2, respectively. Their
guards will be restricted to states such that 2:(x1 = E1) = x1 > E1 and
2:(x2 = E2) = x2 > E2 hold respectively. It is easy to verify that for cor-
rectly initialized processes xi � Ei holds at control state wi, which implies that
transitions leading to states violating mutual exclusion will never be taken.

e1e2

w1w2

s1s2

e1w2

s1w2

w1e2

w1s2

s1e2 e1s2

a1

r2

a2

p1p2 r1

r1

r2

r2

a2

a2

a1

a1

p1

(t1 � D1)
�

p2

p2

p1r1

(t1 = T1)
�

x1 := 0

g02

g02 = ((t1 > T1) ^ (t2 � D2))
�

Fig. 7. Product of process 1 and 2

6.2 Tra�c light for tramway crossing

GR

b. A Tramway

a. Tra�c light

a02

a01 y := 0(y = dR)
�

y := 0 (y = dG)
�

(l2 � x � u2)
�

a2

O A C
x := 0 (l1 � x � u1)

�

a0 a1

Fig. 8. Tra�c light and Tramway

The light controlling the car tra�c in a crossroads is a periodic timed process
with two control states G (Green) and R (Red) and a clock y to enforce sojourn
times dG and dR, respectively, at G and R (�gure 8a).

We want to modify the light so as to control the tra�c of tramways. When
a tramway approaches the crossing, it sends a signal a0 after which the light
must be green within some interval [l1; u1]. This guarantees that the tramway
crosses without stopping. Then, the light remains green until the tramway exits
the crossing. Figure 8b represents a tramway as a process with control states O
(Out), A (Approach), C (Cross). We assume that the tramway exits the cross
section within time in the interval [l2; u2] since the beginning of the approach
phase.

The modi�ed behavior of the light can be obtained as the parallel composition
of the tra�c light process and of the tramway process by taking �(a1) = �(a01) =
min and �(a2) = �(a02) = max. The resulting timed controller handling one
tramway (at most) is given in �gure 9. It corresponds to the product of the two
timed systems under the assumption of maximal progress and that all the actions
interleave. The dashed transitions will never be taken due to higher priority of
synchronizations. The typed guards G1, G

0
1, G11 and G22 are the following:

G11 = (x � u1 ^ y = dR)
� _ (l1 � x � u1 ^ y � dR)

�

G22 = (l2 � x ^ y = dG)
� _ (l2 � x � u2 ^ dG � y)�

G1 = (l1 � x � u1 ^ y > dR)
�

G01 = (y = dR ^ x > u1)
�:

OR AR CR

OG AG CG

a0

x := 0

a0

a01
(y = dG)

�

y := 0

a1

y := 0

a02
(y = dR)

�

a02

(y = dG)
�

a1pa
0
1

a02

a2

(l1 � x � u1)
�x := 0

y := 0

a2pa
0
2

G22

a1 G1

(false)�

G11a01
G01 y := 0 (false)�

y := 0

Fig. 9. Controller for a tramway

7 Discussion

The paper presents a framework for extending compositionally the description
of untimed systems to timed systems by preserving time reactivity and activity
of components. The adopted composition principle contrasts with the most com-
monly adopted which is based on strong synchronization for time progress and
implies preservation of components urgency. Preserving time reactivity requires
sometimes relaxing urgency constraints.

An important outcome of this work is that composition operators for un-
timed systems admit di�erent timed extensions due to the possibility of control-
ling waiting times and \predicting" the future. The use of modalities in guards
drastically increases concision in modeling and is crucial for compositionality. It
does not imply extra expressive power for simple classes of timed systems, such
as linear hybrid automata [ACH+95], where quanti�cation over time in guards
can be eliminated.

The de�nition of di�erent synchronization modes has been motivated by the
study of high level speci�cation languages for timed systems, such as Timed Petri
nets and their various extensions[SDdSS94,SDLdSS96,JLSIR97]. We have shown
that the proposed framework is a basis for the study of the underlying semantics
and composition techniques; if they are bounded then they can be represented
as timed systems with �nite control state space. Another outstanding fact is
that using max-synchronization and min-synchronization, in addition to and-
synchronization, drastically helps keeping the complexity of the corresponding
timed system low [BST97].

The results concerning the algebraic framework itself are recent. We are cur-
rently studying their application to the compositional generation of timed models
of real-time applications and in particular to scheduling.

8 Related Work

The problem of compositional description in languages with priorities has been
principally studied for process algebras. The �rst work is, to our knowledge
[BBK86], where is de�ned an untimed process algebra with a priority order on
its set of actions. Later, in several papers, Cleaveland and his colleagues show
the interest of priority for the speci�cation and the veri�cation of distributed un-
timed systems [CH90,CLNS96,CLN96,CLN98]. Our work is closer to the work by
Insup Lee and his colleagues, [BGL97,BACC+98] on the timed process algebra
ACSR. The latter is a timed algebra with priorities and mutual exclusion con-
straints with value passing communication and dynamic priorities. It has been
used for schedulability analysis of real-time systems. However, this work does
not tackle compositionality issues concerning both the associativity of priority
choice operators and property preservation. Another important di�erence is that
although our priority order is static, it allows \prediction" which is essential for
achieving maximal progress for timed systems.

Acknowledgment

The authors would like to thank Yassine Lakhnech and Kim Larsen for their
contribution to the improvement of this paper.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3{34, 1995.

[BACC+98] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y.S. Kim, I. Lee, and H.-L. Xie.
A process algebraic approach to the schedulability analisys of real-time
systems. Real-time Sytems, 15, pages 189{219, 1998.

[BBK86] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equa-
tions for an interrupt mechanism in process algebra. Fundamenta Infor-
maticae IX (2), pages 127{168, 1986.

[BGL97] P. Bremond-Gregoire and I. Lee. A process algebra of communicating
shared resources with dense time and priorities. Theoretical Computer
Science, 189, 1997.

[BS98] S. Bornot and J. Sifakis. On the composition of hybrid systems. In
First International Workshop Hybrid Systems : Computation and Control
HSCC'98, pages 49{63, Berkeley, March 1998. Lecture Notes in Computer
Science 1386, Spinger-Verlag.

[BST97] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed sys-
tems. In International Symposium: Compositionality - The Signi�cant Dif-
ference, Malente (Holstein, Germany), September 1997. Lecture Notes in
Computer Science 1536, Springer Verlag.

[CH90] R. Cleaveland and M. Hennessy. Priorities in process algebra. Information
and Computation, 87(1/2), pages 58{77, 1990.

[CLN96] R. Cleaveland, G. Luttgen, and V. Natarajan. A process algebra with
distributed priorities. In U. Montanari and V. Sassone, editors, CONCUR
'96, pages 34{49. LNCS 1119, Springer-Verlag, August 1996.

[CLN98] R. Cleaveland, G. Luttgen, and V. Natarajan. A process algebra with
distributed priorities. Theoretical Computer Science, 195(2), pages 227{
258, March 1998.

[CLNS96] R. Cleaveland, G. Luttgen, V. Natarajan, and S. Sims. Modeling and veri-
fying distributed systems using priorities: A case study. Software Concepts
and Tools 17, pages 50{62, 1996.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193{
244, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[JLSIR97] M. Jourdan, N. Layaida, L. Sabry-Ismail, and C. Roisin. An integrated

authoring and presentation environment for interactive multimedia docu-
ments. In 4th Conference on Multimedia Modeling, Singapore, November
1997. World Scienti�c Publishing.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267{310, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[SDdSS94] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation

of multimedia scenarios. Annals of telecomunications, 49(5-6):297{314,
1994.

[SDLdSS96] P. S�enac, M. Diaz, A. L�eger, and P. de Saqui-Sannes. Modeling logical and
temporal synchronization in hypermedia systems. In Journal on Selected
Areas in Communications, volume 14. IEEE, jan. 1996.

[SY96] J. Sifakis and S. Yovine. Compositional speci�cation of timed systems.
In 13th Annual Symposium on Theoretical Aspects of Computer Science,
STACS'96, pages 347{359, Grenoble, France, February 1996. Lecture Notes
in Computer Science 1046, Spinger-Verlag.

