
- 1 -

Towards Validated Real-Time Software✲✲✲✲

Valérie BERTIN†, Michel POIZE, Jacques PULOU

France Télécom - Centre National d'Etudes des Télécommunications
28 chemin du Vieux Chêne - BP 98 - 38243 Meylan cedex - France
{valerie.bertin, michel.poize, jacques.pulou}@cnet.francetelecom.fr

Joseph SIFAKIS

VERIMAG - Centre Equation
2 avenue de Vignate

38610 Gières - France
Joseph.Sifakis@imag.fr

Abstract
We present a tool for the design and validation of
embedded real-time applications. The tool integrates two
approaches, the use of the synchronous programming
language ESTEREL for design and the application of
model-checking techniques for validation of real-time
properties. Validation is carried out on a global formal
model (timed automata) taking into account the effective
implementation of the application on the target hardware
architecture as well as its external environment behavior.

Keywords : real-time computing, embedded applications,
real-time constraints, compiling, synchronous languages,
validation, timed automata, model-checking, external
environment modelling.

1 - Introduction
The correct behavior of real-time applications

depends not only on the correctness of the results of
computations but also on the times at which these results
are produced. Their development requires rigorous
methods and tools to reduce development costs and
"time-to-market" while guaranteeing the quality of the
produced code (in particular, respect of the temporal
constraints).

The above requirements motivated the development of
the TAXYS tool, dedicated to the design and validation of
real-time telecommunications software.

One of the major goal of the TAXYS tool is to produce
a formal model that captures the temporal behavior of the

✲ This work is supported in part by the RNRT project TAXYS.
† Alcatel Business Systems - Colombes - France

whole application which is composed of the embedded
computer and its external environment. For this purpose
we use the formal model of timed automata from Alur and
Dill [8]. The choice of this model allows the use of
results, algorithms and tools available [9], [10]. We use
the KRONOS model checker [8] for model analysis.

From the source code of the application, an ESTEREL
program annotated with temporal constraints, the TAXYS
tool produces on the one hand self-sequenced executable
code and on the other hand a timed model of the
application. This model is again composed with a timed
model of the external environment in order to obtain a
global model which is statically analyzed to validate
timing constraints. This validation should notably shorten
design time by limiting tedious test and simulation
sessions.

We present the TAXYS tool and the associated
approach. In section 2, we expose the general architecture
of TAXYS and the different steps of the development of
an application with this tool. In section 3, we provide two
simple examples illustrating the approach.

2 - TAXYS architecture
The use of synchronous languages [3] for the

development of real-time reactive applications relies on a
"synchrony assumption" meaning that the application
reacts infinitely fast with respect to its environment. This
assumption, very convenient in practice, must be
validated for a given implementation on a target machine.
In this validation, dynamic features of the machine and of
the external environment must be taken into account. The
speed of the machine determines duration of atomic
actions executed in synchronous program computation
steps. In practice, validating the synchrony assumption
amounts to show that the environment does not take too

- 2 -

much lead over the application. This requires the use of a
"realistic" synchrony assumption strongly depending on
the application and its interactions with the environment.

2.1 - Structure of a TAXYS application
To interface the real-time system with its environment,

we use an External Events Handler (EEH) which keeps
track of the history of the environment and triggers
computation steps of the application.

The EEH receives events generated by the external
environment and delivers sets of signals called stimuli to
the Polling Execution Structure (PES) (see figure 1). The
PES is a cyclic process, driven by stimuli, which executes
a single procedure, called REACT.

2.1.1 - External Events Handler (EEH)
The correspondence between stimuli and history of

external events depends on the way significant external
environment state changes are taken into account by the
application. Correctness of the implementation strongly
depends on the policy of the EEH. Among the different
policies to build stimuli, we distinguish two extreme
ones :
• The external events history is structured as a FIFO

queue and each execution of REACT consumes the
stimulus, corresponding to a single event, placed on
top of the queue (FIFO policy).

• The external events history is not structured ; when
REACT procedure starts its execution, all the events
in the buffer are taken to be in the same stimulus
(Greedy Policy).

In this model we assume that there is no busy waiting :
external events are recorded by interrupt routines which
will be considered to be timeless as a first approximation ;
their duration is negligible with respect to execution times
of treatments in the application (a more accurate model
can be obtain by adding this overhead to these execution
times). The stimuli are recorded in a buffer.

External Events
Handler

Stimuli Polling
Execution Structure

External
events

loop
 if presence of stimulus
 get stimulus

 else wait for stimulus
end loop

REACT(stimulus)

REACT :

C functions

call to
treatments

ordered
halting
points

Figure 1. Structure of a TAXYS application

2.1.2 - Polling Execution Structure (PES)
We use ESTEREL [4] as development language of the

application. This language provides powerful constructs
for management of parallelism and exceptions. It has
rigorously defined semantics. ESTEREL programs can
refer to external data and routines written in C.

We have extended ESTEREL with pragmas (compiling
directives) intended to specify temporal constraints of
applications. A temporal constraint corresponds to a pair
of locations in the ESTEREL code (location of triggering of
the constraint, location of test of the constraint).

We use the SAXO-RT compiler [5] to generate from an
ESTEREL source file a PES intermediate C code in the
form of a cyclic process that gets a stimulus from the EEH
and calls the REACT procedure. The latter uses an array
of halting points associated with C functions.

Halting points are control locations of the ESTEREL
source code where processing may stop waiting for some
internal or external signals. External signals belong to
stimuli provided by the EEH as mentioned previously.
Internal signals can be either explicit (e.g. the declared
ESTEREL internal signals) or implicit (e.g. synchronous
termination of parallel tasks). At run time, a halting point
can be either active or inactive.

Each control state of a program corresponds to a
single set of active halting points. If a halting point is
active and sensitive to the current stimulus, then the
associated C function is executed. The execution consists
in modifying data and computing the next control state.

The REACT procedure scans the halting points in a
pre-calculated order guaranteeing the respect of causality
constraints imposed by the ESTEREL semantics. This
order, which realizes the interleaving of concurrent tasks,
is chosen at compile time.

We use the SAXO re-targetable optimized compiler
[2] to generate executable code from the PES intermediate
C code and for the EEH definition. SAXO is dedicated to
embedded applications on irregular processing
architectures such as Digital Signal Processors (DSP). It
produces, from the functional description of the
application (set of C files) and from the description of the
hardware architecture, a memory mapped machine code
executable as stand-alone code. No software kernel is
needed.

SAXO takes into account the features of the hardware
to optimize the generated code. This allows a precise
evaluation of execution times of functions, used for
temporal validation.

2.2 - Modeling of a TAXYS application
To check synchrony assumption and temporal

constraints, we build a global timed model by
composition of the two timed automata representing the
embedded code behavior, and the external environment

- 3 -

coupled by the finite automaton model representing the
EEH. The timed automaton representing embedded code
behavior is generated automatically from the PES
intermediate code produced by the SAXO-RT compiler.
The automata modeling the environment and the EEH are
provided separately.

The validation is carried out by using the KRONOS
tool. KRONOS [8] is a symbolic model checker for real-
time applications modeled as a timed automaton. It allows
in particular, to check whether a real-time application
satisfies a property specified as a formula of the real-time
temporal logic TCTL [8].

Timed automata [1] are automata extended with
continuous variables called clocks that measure the time
elapsed at states and can be tested and reset at transitions.
KRONOS can be used to check logical properties – such
as mutual exclusion, reachability, inevitability or lack of
deadlock – as well as temporal constraints such as bounds
on the time between the execution of two transitions in
the timed automaton. If a property is not met, KRONOS
generates some diagnostics for error detection and
correction.

The properties characterizing the synchrony
assumption depend on the way the EEH establishes the
correspondence between external events and stimuli.
They can be expressed as constraints of the form | te – to |
< D where to is the time of occurrence of an external
event and te the termination time of the treatment
triggered by the occurrence of the event (see figure 2).

Environment application

to EEH : stimuli

te

Figure 2. Temporal behavior of a TAXYS application

2.2.1 - Timed model of the environment
We consider that the environment generates a set of

events S↑={ s1↑ , s2↑ , …, sn↑} . The event sequences of
the environment are modeled as a timed automaton whose
transitions are labeled with events, elements of S↑ .
Let S={ s1, s2, …, sn} be the set of input signals of the
ESTEREL source program. These signals are in bijection
with the set S↑ of external environment events. The event
si↑ is a state change of the environment that makes si =
true.

The automaton for the environment is described in
ESTEREL extended with functions that manipulate time
and clocks. This description is then translated in a timed
automaton by the tool Env2TM.

2.2.2 - The model of the EEH
The EEH determines the way external events are taken

into account by the application to generate an image of
the state of the environment which is nothing but the
application's view on the environment. An external event
s↑ is taken into account when a stimulus containing the
signal s is produced. The EEH can be modeled as an
automaton with two types of transitions : input transitions
that are triggered by external events (elements of S↑) and
output transitions labelled by stimuli (subsets of S).

From any state, there exist successors for any possible
input event but a unique output transition labeled with a
stimulus. The automaton modeling the EEH can be
considered as a transducer from external event flow to
stimuli sequence. The EEH is described in a specific
language and is then translated in the aforementioned
automaton by the tool EEH2A.

The language allows to characterize the EEH in terms
of the size of its buffer, the set of the input events and
their attributes. These attributes are used to specify
precisely the different policies for taking external event
flow into account. According to the type of the
application, it may be important to generate as many
occurrences of a signal s as the number of the occurrences
of the event s↑ (s↑ is cumulative) or to consider that the
events have no cumulative effect (s↑ is coalescent).

For a cumulative event it is assumed that between two
successive occurrences there exists a system reaction
consuming it. We show later how such a property can be
checked : for example, an alarm event is not cumulative
in general, as the system must react as soon as possible.

Another attribute is the separator attribute. If an
event is a separator then after its occurrence a new
stimulus is constructed. As a consequence, two distinct
occurrences of a separator event appear in distinct stimuli.

Handler =
{ buffer_size=4
event S1 : separator
event S2 : cumulative
event S3 :
event S4 :

%default : S3 is coalescent as S4
}

Example : For a FIFO policy, all events must be separa-
tors while for a greedy policy no event is a separator.

2.2.3 - Timed model of the application
The timed model of an application is generated from

the intermediate code by the tool IC2TM. It is a timed
automaton with two kinds of states :
• waiting states corresponding to configurations of

halting points. Transitions issued from them are
labeled by stimuli.

- 4 -

• computation states corresponding to execution of C
functions associated with halting points. Transitions
from computation states are labeled by elements of
the set S↓={ s1↓ , s2↓ , …, sn↓} . The label si↓ is used
to denote the completion of the computation
triggered by the external event si↑ .

From a waiting state (set of active halting points) and
a given stimulus, the application automaton takes the
transition sensitive to the stimulus and reaches a
computation state. From this state, it computes the set of
C functions associated with the active halting points of
the waiting state and sensitive to the consumed stimulus.
The automaton will stay at the computation state for some
time corresponding to the execution time of these
functions. Then, it will get to the next waiting state by a
transition labeled with si↓ , indicating completion of the
computation of functions triggered by external events si↑ .

To distinguish between termination times of functions
associated with a computation state, the latter can be split
up into a sequence of computation states. Transitions
between these states are labeled by elements of the set S↓
and correspond to the termination of individual functions.

2.3 - TAXYS general architecture
SAXO-RT, SAXO, Env2TM, EEH2A, IC2TM and

KRONOS are integrated into the TAXYS environment as
shown in figure 3. TAXYS takes as inputs the description
of the application, of the EEH and of the environment, the
constraints that have to be verified and the features of the
hardware target architecture.

From ESTEREL source code annotated with temporal
constraints and from C functions, the SAXO-RT tool
produces an intermediate code. This intermediate code is
compiled by the SAXO tool in order to generate self-

sequenced code directly executable by the target
architecture.

A timed model of the implementation of the
application is then produced from the intermediate code
by the IC2TM tool. The environment is also modeled as a
timed automaton by the Env2TM tool. The EEH is
modeled as an automaton by the EEH2A tool. The three
automata are then composed, in order to obtain a global
model, and analyzed by the KRONOS tool which
generates diagnostics if the timing constraints are not
satisfied.

3 - Two simple examples to illustrate the
methodology

3.1 - Scheduling of two tasks
3.1.1 - Specifications

Consider an application reacting to two periodic
events, s1↑ and s2↑ , each one requiring the execution of a
dedicated task, task1 and task2, respectively. The tasks
are completed within intervals [C1,C1'] and [C2,C2'],
respectively. Each task must terminate before the
occurrence of the next request of its execution.

The events s1↑ and s2↑ are generated by the
environment and are characterized by their period Ti, i ∈
{1,2}, and their relative shift δ.

Notice that our example follows closely assumptions
about applications in RMA or EDF scheduling [6] except
that we forbid preemption.

3.1.2 - Timed model of the application
The ESTEREL application code with temporal

constraints is given in figure 4(a).

ESTEREL source
code + constraints

Intermediate Code
+ REACT procedure

C functions
(treatments)

Machine
Description file

Environment
Timed Model

Application
Timed Model

External Events Handler
Model

Target machine
executable code Diagnostics

SAXO-RT

IC2TM KRONOSSAXO

Execution times

Environment
description

External Events
Handler description

EEH2A Env2TM

Figure 3. TAXYS general architecture

- 5 -

module example:
procedure task1()();
procedure task2()();
input s1,s2;
 loop
 await s1;
 %#reference ref1
 call task1()();
 %#length [C1,C1']
 %#deadline T1 / ref1
end
||
 loop
 await s2;
 %#reference ref2
 call task2()();
 %#length [C2,C2']
 %#deadline T2 / ref2
end
end module

(a)

{s2}
x := 0

WAIT

task2
x≤C2'

task1
x≤C1'

{s1}
x := 0

{s1,s2}
x := 0

s1↓
C1≤ x ≤C1'

task2
x≤C2'

s1↓
C1≤ x ≤C1'
x := 0

s2↓
C2≤ x ≤C2'

s2↓
C2≤ x ≤C2'

task1
x≤C1'

(b)
Figure 4. (a) ESTEREL application code - (b) Timed model of the application

The corresponding timed automaton is represented in
figure 4(b). It has only one waiting state (WAIT) while all
the other states are computation states. Edges labeled by
s1↓ (respectively s2↓) correspond to the end of the
execution of task1 (respectively task2) and can be
considered as acknowledgments of event s1↑ (respectively
s2↑). In the case where the stimulus {s1, s2} is present, the
SAXO-RT compiler gives priority to task1. This priority is
an implementation choice as SAXO-RT takes into account
only causality preservation rules when it sequentializes by
interleaving the parallel tasks. In this case, our model
captures the fact that the two tasks do not terminate at the
same time.

The clock x is used to control execution times. On the
model, thick edges correspond to completion of tasks and
dashed edges correspond to beginning of execution cycles
(REACT procedure).

3.1.3 - Timed model of the environment
Each one of the two events s1↑ and s2↑ is generated by

a timed automaton Ai, i ∈ {1,2}, using a clock Zi (see
figure 5).

s1↑
Ζ1=Τ1

Ζ1:=0A1

Z1 ≤ T1 s2↑
Ζ2=Τ2

Ζ2:=0

s2↑
Ζ2=δ
Ζ2:=0A2

Z2 ≤ δ Z2 ≤ T2

Figure 5. Timed automata for events s1↑ and s2↑

The global environment behavior is modeled as a
timed automaton which is the synchronized product of the
two independent timed automata A1 and A2 (see figure 6).

In this model, s1s2↑ denotes the simultaneous occurrence
of s1↑ and s2↑ .

s2↑
Ζ2=Τ2

Ζ1<T1
Ζ2:=0

s1↑
Ζ1=Τ1

Ζ2<Τ2
Ζ1:=0

s2↑
Ζ2=δ
Ζ2:=0

Ζ1≤ 0
Ζ1≤Τ1
Ζ2≤Τ2

Ζ2≤ δ
s1↑

Ζ1=0
Ζ1:=0

s1s2↑
Ζ1= T1

Ζ2=T2
Ζ1:=0
Ζ2:=0

Figure 6. Timed model of the environment

3.1.4 - Model of the EEH
We consider two EEH for this application. The first

one has a buffer of size one and both input events are
non-separators and cumulative, that is :
• All events which occur in the external environment

during a reaction cycle are consumed simultaneously
in the next reaction cycle.

• If an event occurs whereas the last occurrence of the
same event has not been consumed by the
application, then an error condition is reported
(represented in the model by an error state).

This EEH is specified below and its automaton model
is shown in figure 7. It is used to build the global model
analyzed in section 3.1.5.

Handler ={
buffer_size=1
event S1 : cumulative
event S2 : cumulative

}

- 6 -

s1↑
s1s2↑empty

s1

s2

s1s2

s1s2↑

s2↑
s1s2↑

s1↑

s2↑

s2↑

s1↑

s1↑

s2↑

{s1,s2}

s1s2↑

{s1}

{s2}

error

Figure 7. Model of the EEH – example 1

The second EEH has a buffer of size two and both
input events are separators and cumulative, that is :
• The events are consumed one by one in the order of

their occurrence (except when they occur exactly at
the same time in the environment).

• If an event occurs whereas the last occurrence of the
same event has not been consumed by the
application, then an error condition is reported
(represented in the model by an error state).

This EEH is specified below and its automaton model
is shown in figure 8.

Handler ={
buffer_size=2
event S1 : separator
event S2 : separator

}

s1s2↑

s1

s2

s1&s2

s1s2↑

s2↑
s1s2↑

s1↑

s2↑

s2↑
s1↑

s1↑

s2↑

{s1,s2}

s1s2↑

{s1}

{s2}

error

s1 s2

s2 s1

{s1}

{s2}

or
or

or

ors1↑
s1↑ or s2↑
or s1s2↑

s1↑ or s2↑

or s1s2↑
empty

Figure 8. Model of the EEH – example 2

3.1.5 - Global timed model and results
For this example, the global timed model obtained as

the composition of the three timed models has 25 states
(including a unique error state representing all the global
states containing the "error" state of the EEH), 94
transitions and 3 clocks.

We used the KRONOS tool to check correctness of the
implementation for different values of the time constants
δ, T1, T2, C1, C2 (see table 1). Correctness is characterized
by the following properties :
• non-reachability of the error state.

• the maximum delay between s1↑ and s1↓
(respectively between s2↑ and s2↓) is bounded by T1
(respectively T2).

δ, T1, T2 0, 20, 50 3, 20, 50 0, 20, 53
C1
C2

10
20

10
21

11
18

11
19

15
10

15
11

11
16

11
17

15
10

15
11

11
10

11
11

15
6

15
7

correct yes no yes no yes no yes no yes no yes no yes no

Table 1. Correctness of some implementations

Figure 9 shows the surfaces representing the pairs (C1,
C2) for which the implementation is correct, for given
environment parameters (δ, T1, T2). The shape of the
surfaces suggests that when no preemption is allowed,
there is no simple analytical correctness condition similar
to the one by Liu and Layland [6].

1 7 13 19 25 31 37 43 49
1

25

49

0
5

10
15
20
25
30
35
40
45
50

C2

C1

T1

T2 = 50
δδδδ = 0

Figure 9. Correctness regions

3.2 - Communication mode of a GSM mobile
terminal

This example is inspired from the communication
mode of a GSM mobile terminal [7]. A small part of the
application is presented in this section.

3.2.1 - Specifications
The application is described as an annotated

ESTEREL program consisting of two tasks in parallel
(see figure 10).

The first task executes successively the treatment
prepar-RF (which consists in preparing the radio front
end of the mobile terminal in order to receive data) when
event sprepar↑ occurs then demodulation followed by
decoding when event sreceipt↑ occurs. The second task
executes the treatment frequency_computation (which
consists in calculating the frequencies on which the data
are going to be received) whenever event sfreq↑ occurs.

The treatments are subject to temporal constraints
concerning their duration, release or deadline :
• the treatment prepar-RF (RF in figure 11) has a

duration of 50 time units exactly and must be finished
before 80 time units after the latest occurrence of
event sprepar↑ ;

- 7 -

• the treatment demodulation (DEM in figure 11) has a
duration between 80 and 100 time units, must begin at
least 10 time units after the latest occurrence of event
sreceipt↑ and must be finished before 150 time units
after the latest occurrence of event sreceipt↑ ;

• the treatment decoding (DEC in figure 11) has a
duration of 20 time units ;

• the treatment frequency_computation (FC in figure
11) has a duration of 40 time units and must be
finished before 90 time units after the latest
occurrence of event sfreq↑ .

3.2.2 - Timed model of the application
This application is modeled as the timed automaton of

figure 11. In this timed automaton, the SAXO-RT
compiler schedules the treatments prepar-RF,
frequency_computation, demodulation, decoding taking
into account causality rules between halting points (see
section 2.1.2). Duration and release constraints are
imposed on the model by using clocks X and C. The
clock X is used to control treatments duration and C is a

clock used to impose release constraints with respect to
sreceipt↑ which is generated by the environment. Deadline
constraints are requirements to be verified on the global
model.

3.2.3 - Timed model of the environment
The environment generates three periodic events

sprepar↑ , sreceipt↑ and sfreq↑ (see figure 12). sprepar↑ and
sreceipt↑ have the same period T and are separated by a
phase shift of δ. sfreq↑ has a period T' and has a phase
shift δ' at the origin.

sprepar↑ sreceipt↑ sprepar↑
timeδ

T'T'

 T

sfreq↑
time

sreceipt↑ sprepar↑

time = 0

δ'

sfreq↑sfreq↑sfreq↑

Figure 12. Behavior of the environment

module example:

procedure prepar-RF()();
procedure demodulation()();
procedure decoding()();
procedure frequency_computation()();

input sprepar, sreceipt, sfreq;

 loop
 await sprepar;

% #reference REFprepar
 call prepar-RF()();

% #length [50,50]
% #deadline 80 / REFprepar

 await sreceipt;
% #reference REFreceipt

 call demodulation()();
% #length [80,100]
% #release 10 / REFreceipt
% #deadline 150 / REFreceipt

 call decoding()();
% #length [20,20]

 end
||
 loop
 await sfreq;

% #reference REFfreq
 call frequency_computation()();

% #length [40,40]
% #deadline 90 / REFfreq

 end

end module

True

X <= 50X <= 50X <= 40

{sprepar,sfreq}{sprepar}{sfreq}
X := 0X := 0X := 0

WAIT

RFRFFC

sprepar↓
sprepar↓

X = 50

X = 50 ; X := 0

sfreq↓
X = 40

80<= X <= 100

True

X <= 40

X <= 100

X <= 40

{sreceipt,sfreq}{sreceipt}{sfreq} X := 0
X := 0X := 0

WAIT

FC

DEM

FC

sfreq↓
X = 40

X <= 40
FC

sfreq↓
X = 40

sreceipt↓

X <= 20
DEC

X := 0

X = 20

sfreq↓
X = 40

X := 0

80<= X <= 100

X <= 100
DEM

sreceipt↓

X <= 20
DEC

X := 0

X = 20

C >= 10

X = 0

C >= 10

C = 10

C <= 10

sfreq↓

X := 0

X = 40
C < 10

X := 0

C = 10

C <= 10

X := 0

C < 10

 Figure 10. ESTEREL source code with timing constraints Figure 11. Timed model of the application

- 8 -

The environment is modeled as a timed automaton,
product of two independent timed automata, one for
events sprepar↑ and sreceipt↑ (because they have the same
period) and one for event sfreq↑ . It has 6 states, 18
transitions and 2 clocks.

3.2.4 - Model of the EEH
We consider in this example, that the EEH has a

buffer of size three. The three external events are
separators and cumulative.

3.2.5 - Global timed model and results
KRONOS is used to check whether deadlines are

respected or not. According to the periods of the external
events (T and T') and to their initial phase shifts (δ and
δ'), none, one or more deadline(s) can be overrun. The
TAXYS diagnostics are presented in the table 2.

4 - Conclusions and future work
We have presented an approach for the design and

validation of real-time applications. This approach
combines the synchronous ESTEREL language for design
and model-checking for validation.

The work reported is part of a more general project
which aims automatic low level code generation from
high level specifications of an embedded real-time
application.

Current work is developed in the following
directions :
• Mastering state explosion, an inherent limitation of

model-checking techniques, by using "on-the-fly"
symbolic analysis to avoid explicit construction of
the global model. Such techniques have already
been implemented in the KRONOS tool and are
currently under evaluation on industrial
applications.

• Increase of readability of diagnostics and
traceability of the results. In particular, help the user
identifying possible causes of an error.

• Generation of optimal schedulers, at compile time.
The SAXO-RT compiler considers one arbitrary
order of parallel tasks, provided it respects the
causality requirements. We study scheduling
techniques taking into account global dynamic
features of the application as well as "realistic"
synchrony assumptions.

References
[1] R. Alur, D. Dill, "Automata For Modeling Real-Time Systems",

Proceeding of the 17th ICALP, Lecture Notes In Computer
Sciences 443, Springer Verlag, pp. 322-335, 1990.

[2] J.C. Bauer, E. Closse, E. Flamand, M. Poize, J. Pulou, P. Venier,
"SAXO, a re-targetable Optimized Compiler for DSPs",
Proceedings of the 8th international Conference on Signal
Processing Applications & Technology, San Diego, California,
USA, pp. 1032-1036, September 14-17, 1997.

[3] G. Berry, A. Benveniste, "The Synchronous Approach to Reactive
and Real-Time Systems", Another Look at Real-Time Programm-
ing, Proceedings of the IEEE, vol. 79, pp. 1270-1282, 1991.

[4] G. Berry, G. Gonthier, "The ESTEREL Synchronous Programming
Language : Design Semantics, Implementation", Science of
Computer Programming, vol. 19-2, pp. 87-152, 1992.

[5] V. Bertin, M. Poize, J. Pulou, "Une Nouvelle Méthode de
Compilation pour le Langage ESTEREL [a New Method for
Compiling the ESTEREL Language]", Proceedings of GRAISyHM-
AAA, Lille, France, March 1999 (in French).

[6] C.L. Liu, J.W. Layland, "Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment", J. of the ACM,
Vol. 20-1, pp. 46-61, January 1973.

[7] M. Mouly, M.B. Pautet, "The GSM System for Mobile
Communication", Cell&Sys, 1992.

[8] S. Yovine, "Model Checking Timed Automata", in Embedded
Systems, G. Rozemberg anf F. Vaan Drager EDS, Lecture Notes
in Computer Sciences, 1998.

[9] T.A. Henzinger, P. H. Ho, H. Wong-Toi, “HYTECH: a Model-
Checker for Hybrid Systems”, Journal of Software Tools for
Technology Transfert, vol. 1-1/2, pp 110-122, 1997.

[10]K.G. Larsen, P. Petterson, Wang Yi. “UPPAAL in a nutshell”,
Journal of Software Tools for Technology Transfert, vol. 1-1/2, pp
134-152, 1997.

T, δ, T', δ' 210,60,210,60 240,60,320,30 240,60,320,60 240,60,330,60 240,60,160,60 240,60,160,85 240,120,160,40
deadline of RF OK OK OK OK OK overrun overrun
deadline of DEM OK OK OK OK OK OK OK
deadline of FC OK overrun OK overrun OK overrun OK

Table 2. TAXYS diagnostics

	Towards Validated Real-Time Software(
	A
	Introduction
	TAXYS architecture
	Structure of a TAXYS application
	External Events Handler (EEH)
	Polling Execution Structure (PES)

	Modeling of a TAXYS application
	Timed model of the environment
	The model of the EEH
	Timed model of the application

	TAXYS general architecture

	Two simple examples to illustrate the methodology
	Scheduling of two tasks
	Specifications
	Timed model of the application
	Timed model of the environment
	Model of the EEH
	Global timed model and results

	Communication mode of a GSM mobile terminal
	Specifications
	Timed model of the application
	Timed model of the environment
	Model of the EEH
	Global timed model and results

	Conclusions and future work

